数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge^\star\color{red}{\textbf{ 狗屎}}\color{darkorange}{\textbf{活活吃傻}}\)

[复制链接]
发表于 2025-11-5 14:50 | 显示全部楼层

        elim,根据威尔斯特拉数列极限的\(\varepsilon—N\)定义,\(\infty=\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)\(( N_{\varepsilon}\in\mathbb{N})\),所以\(\displaystyle\lim_{n \to \infty}n\to\infty \)即指\(\displaystyle\lim_{n \to \infty}n\in\)\(\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)之意.由于\(\{n|n>N_{\varepsilon}(=[\tfrac{1}{\varepsilon}]+1\}\subset\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\);
         还有春氏可达的数学表达式是:\(\displaystyle\lim_{\color{red}{n→∞}}\color{Magenta}{a_n=a}\Longleftrightarrow\color{Magenta}{a_n=a}(\color{red}{n→∞})\)与你的\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\)有什么关系?若\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\),数学中(当然也包括理论力学、分析化学……)中的\(\displaystyle\lim_{n \to \infty}\)还有数学意义吗?还具可操作性吗?再者春氏可达的先决条件(即已知条件)是“极限存在”,你的\(\displaystyle\lim_{n \to \infty}a_n\ne a\)又是什么东西?通俗地说,人家的命题是:人都不吃自己拉的屎。你偏要定义:elim要吃拉的屎。在这样的定义下,你最多只能证明elim要吃自己拉的屎。除此之外,你还能证明什么呢?
回复 支持 反对

使用道具 举报

发表于 2025-11-5 14:57 | 显示全部楼层

        elim,根据威尔斯特拉数列极限的\(\varepsilon—N\)定义,\(\infty=\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)\(( N_{\varepsilon}\in\mathbb{N})\),所以\(\displaystyle\lim_{n \to \infty}n\to\infty \)即指\(\displaystyle\lim_{n \to \infty}n\in\)\(\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)之意.由于\(\{n|n>N_{\varepsilon}(=[\tfrac{1}{\varepsilon}]+1\}\subset\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\);
         还有春氏可达的数学表达式是:\(\displaystyle\lim_{\color{red}{n→∞}}\color{Magenta}{a_n=a}\Longleftrightarrow\color{Magenta}{a_n=a}(\color{red}{n→∞})\)与你的\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\)有什么关系?若\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\),数学中(当然也包括理论力学、分析化学……)中的\(\displaystyle\lim_{n \to \infty}\)还有数学意义吗?还具可操作性吗?再者春氏可达的先决条件(即已知条件)是“极限存在”,你的\(\displaystyle\lim_{n \to \infty}a_n\ne a\)又是什么东西?通俗地说,人家的命题是:人都不吃自己拉的屎。你偏要定义:elim要吃拉的屎。在这样的定义下,你最多只能证明elim要吃自己拉的屎。除此之外,你还能证明什么呢?
回复 支持 反对

使用道具 举报

发表于 2025-11-5 14:59 | 显示全部楼层

        elim,在现行数学中\(\infty=\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1),\)\(N_ε∈N\}\)。所以\(\displaystyle\lim_{n \to \infty}n\)\(\in N\)\((即\displaystyle\lim_{n \to \infty}n\)\(\to\infty)\)!但\(\displaystyle\lim_{n \to \infty}n\)\(\ne\)\(\infty\)!故此陶哲轩没有错,大错而特错的是民科领袖elim无视威尔斯特拉斯对\(\infty\)和趋向\(\infty\)的定义,自出心裁的定义出一套与现行数学根本不相容的歪理,方得到诸如【无穷交就是一种骤变】、【\(\displaystyle\lim_{n \to \infty}n\)\(=Sup\mathbb{N}\)】……等反现行数学的谬论。这种连最基础的数学基本概念,基本方法都要篡改一通的王八蛋,还有什么脸怼春氏可达!?
回复 支持 反对

使用道具 举报

发表于 2025-11-5 15:21 | 显示全部楼层

定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-11-6 07:46 | 显示全部楼层

        无论是康托尔还是冯\(\cdot\)诺依曼的自然数生或法刨中永远找不到\(ω=\mathbb{N}\)这样狗屁不通的表达式!ω是康托尔实正整数系中的第二个极限序数(第一个极限序数是0),无穷小数序数是elim毫无根据的造。因为无穷是无穷小的倒数,数学中永远都没有最大无穷小量之说,故此翻遍故今中外的数学典籍都找不到“最小无数”这一提法!还有康托尔、冯\(\cdot\)诺依曼数系中的每个自然数都是由\(\phi\)这个特殊的都限集的基数生成的。所以elim的自然数知识近乎白痴,还有利用elim对无穷大的定义,除了抬杠是计么事情都办不]的。如若众网友对无穷大深入研究的话,历別用现行教科书关于无穷大的定义和elim关于无穷大的定义去证明一下希尔伯持无穷宾馆,看看哪种定义能达到目的?
回复 支持 反对

使用道具 举报

发表于 2025-11-6 08:46 | 显示全部楼层

        无论是康托尔还是冯\(\cdot\)诺依曼的自然数生或法刨中永远找不到\(ω=\mathbb{N}\)这样狗屁不通的表达式!ω是康托尔实正整数系中的第二个极限序数(第一个极限序数是0),无穷小数序数是elim毫无根据的造。因为无穷是无穷小的倒数,数学中永远都没有最大无穷小量之说,故此翻遍故今中外的数学典籍都找不到“最小无数”这一提法!还有康托尔、冯\(\cdot\)诺依曼数系中的每个自然数都是由\(\phi\)这个特殊的都限集的基数生成的。所以elim的自然数知识近乎白痴,还有利用elim对无穷大的定义,除了抬杠是计么事情都办不]的。如若众网友对无穷大深入研究的话,历別用现行教科书关于无穷大的定义和elim关于无穷大的定义去证明一下希尔伯持无穷宾馆,看看哪种定义能达到目的?
回复 支持 反对

使用道具 举报

发表于 2025-11-6 08:48 | 显示全部楼层

        无论是康托尔还是冯\(\cdot\)诺依曼的自然数生或法刨中永远找不到\(ω=\mathbb{N}\)这样狗屁不通的表达式!ω是康托尔实正整数系中的第二个极限序数(第一个极限序数是0),无穷小数序数是elim毫无根据的造。因为无穷是无穷小的倒数,数学中永远都没有最大无穷小量之说,故此翻遍故今中外的数学典籍都找不到“最小无数”这一提法!还有康托尔、冯\(\cdot\)诺依曼数系中的每个自然数都是由\(\phi\)这个特殊的都限集的基数生成的。所以elim的自然数知识近乎白痴,还有利用elim对无穷大的定义,除了抬杠是计么事情都办不]的。如若众网友对无穷大深入研究的话,历別用现行教科书关于无穷大的定义和elim关于无穷大的定义去证明一下希尔伯持无穷宾馆,看看哪种定义能达到目的?
回复 支持 反对

使用道具 举报

发表于 2025-11-6 10:54 | 显示全部楼层


      elim,\(\infty=\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)\(( N_{\varepsilon}\in\mathbb{N})\),所以\(\displaystyle\lim_{n \to \infty}n\to\infty \)即指\(\displaystyle\lim_{n \to \infty}n\in\)\(\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)之意.由于\(\{n|n>N_{\varepsilon}\)\((=[\tfrac{1}{\varepsilon}]\)\(+1\}\)\(\subset\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\);来源于威尔斯特拉数列极限的\(\varepsilon—N\)定义: 对\(\forallε>0, \exists正整数N\),当\(n>N\)时,有\(|x_n-a|<\varepsilon\)\(\iff\)\(\displaystyle\lim_{n \to \infty}x_n\)\(=a\)(这个威氏极限定义的符号表示参见同济大学《高等数学》第七版 上册P21页第25行);来源于无穷大量与无穷小量的相互关系;来源于菲赫金哥尔茨关于\(\infty\)的定义;来源于恩格斯关于无穷大量与无穷小的辩证关系(参见恩格斯《自然辩证法》2018年中文版P187页),春风晚霞也想问问你他妈的\(\infty=Sup\mathbb{N}\)来源何处?春风晚霞也想问问究竟是他妈的哪个王八蛋在反现行数学?!
回复 支持 反对

使用道具 举报

发表于 2025-11-6 10:56 | 显示全部楼层

[size=e]
&#8203;命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N})
②、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
回复 支持 反对

使用道具 举报

发表于 2025-11-6 11:04 | 显示全部楼层


      elim,\(\infty=\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)\(( N_{\varepsilon}\in\mathbb{N})\),所以\(\displaystyle\lim_{n \to \infty}n\to\infty \)即指\(\displaystyle\lim_{n \to \infty}n\in\)\(\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)之意.由于\(\{n|n>N_{\varepsilon}\)\((=[\tfrac{1}{\varepsilon}]\)\(+1\}\)\(\subset\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\);来源于威尔斯特拉数列极限的\(\varepsilon—N\)定义: 对\(\forallε>0, \exists正整数N\),当\(n>N\)时,有\(|x_n-a|<\varepsilon\)\(\iff\)\(\displaystyle\lim_{n \to \infty}x_n\)\(=a\)(这个威氏极限定义的符号表示参见同济大学《高等数学》第七版 上册P21页第25行);来源于无穷大量与无穷小量的相互关系;来源于菲赫金哥尔茨关于\(\infty\)的定义;来源于恩格斯关于无穷大量与无穷小的辩证关系(参见恩格斯《自然辩证法》2018年中文版P187页),春风晚霞也想问问你他妈的\(\infty=Sup\mathbb{N}\)来源何处?春风晚霞也想问问究竟是他妈的哪个王八蛋在反现行数学?!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-12-29 05:17 , Processed in 0.441815 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表