数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 顽石

令人哑然的天大笑话

[复制链接]
发表于 2009-2-22 20:31 | 显示全部楼层

令人哑然的天大笑话

对!康托尔“实数集是可列集合的证明”无效!
 楼主| 发表于 2009-2-22 21:23 | 显示全部楼层

令人哑然的天大笑话

曹老先生:
1      0.23147…      (  1        0.00111011010000011…)
2      0.31585…      ( 10        0.01010000110110111…)
3      0.80214…      ( 11        0.11001101010110010…)
4      0.12134…      (100        0.00011111000100000…)
5      0.02581…      (101        0.00000110100110110…)
……      ……                ……
括号内是二进制自然数和二进制小数的一一对应。是根据括号外的自然数和小数变换过来的。二进制小数的对角线,正好是0.01010……,因此,新小数是0.10101……。如果我再加二行对应,可避免出现循环小数的情形,例如:
1      0.23147…      (  1        0.00111011010000011…)
2      0.31585…      ( 10        0.01010000110110111…)
3      0.80214…      ( 11        0.11001101010110010…)
4      0.12134…      (100        0.00011111000100000…)
5      0.02581…      (101        0.00000110100110110…)
6      0.29205671…   (110        0.010010101100010000110…)
7      0.00102886…   (111        0.000000000100001101101…)
……      ……                ……
对角线小数是:0.0101000……,这个唯一的新小数是:0.1010111…… 。
发表于 2009-2-23 08:47 | 显示全部楼层

令人哑然的天大笑话

顽石:第一,我想,我们得到“康托尔“实数集是可列集合的证明”无效!”的结论就行了!不要再去讨论这个问题了!我们还有很多问题需要讨论呀!
第二,既然你又加了两行,那么由此可以看出:由于人们把这个新小数的表达式写到底,所以这个新小数是无法确定的,对吧!
第三,这个问题,我不想多谈了。我想说:我们应当建立新的实数理论,这个新实数理论应当是太极图式的,即需要提出理想实数这个名词,每一个理想实数都有它的近似实数。这一点你同意吗?我们需要前进!时间是宝贵的!
 楼主| 发表于 2009-2-24 10:47 | 显示全部楼层

令人哑然的天大笑话

谢谢曹老先生的指点,我们之间的很多观点、主要观点都是一致的,微小的差异就让它存在吧!作为思考吧!
 楼主| 发表于 2009-2-24 10:55 | 显示全部楼层

令人哑然的天大笑话

曹老先生:您的“康托尔的‘实数集合是不列集合’的定理必须反对”和后来您的“康托尔‘实数集是可列集合的证明’无效!”不统一,可能有笔误,应该纠正一下。都应该是:康托尔的“实数集合是不列集合”。
发表于 2009-2-24 12:02 | 显示全部楼层

令人哑然的天大笑话

下面引用由顽石2007/07/01 06:31pm 发表的内容:
令人哑然的天大笑话
集合论是数学基础。建筑在这个基础之上的数学理论和著作,堆积如山。而构成这个基础的最基本的一个定理,就是“全体小数的数量多于全体自然数”的结论。非常著名,常常出现在科普读物中,或 ...
另外,还可用以下同样十分简单的方法,来证明两者数量相等:
一.在向右无限延伸的水平线上的每个点,代表每个依次排列的自然数,再在每个自然数右边增添无用的尾巴“.0”如:1.0,2.0,3.0 … 等。还规定自然数的十个数字符号,正写和反写视作相同。
楼主:你的十分简单的方法的第一个错误在于假定“在向右无限延伸的水平线上的每个点,代表每个依次排列的自然数”这件事能办到。这等于说水平射线上的点是可数的。我认为你找不到射线的点与自然数的1-1对应。要不说来听听?
 楼主| 发表于 2009-2-24 13:31 | 显示全部楼层

令人哑然的天大笑话

下面引用由elimqiu2009/02/24 00:02pm 发表的内容:
楼主:你的十分简单的方法的第一个错误在于假定“在向右无限延伸的水平线上的每个点,代表每个依次排列的自然数”这件事能办到。这等于说水平射线上的点是可数的。我认为你找不到射线的点与自然数的1-1对应。要 ...
带尾巴“.0”的全体自然数依次排列在向右无限延伸的水平线上,再向左镜像对称翻,变成了全体小数。镜像对称对应,就是天然的一一对应!没有什么可怀疑的。如果不信,您可以去照照镜子,是不是左右翻了。
发表于 2009-2-24 14:09 | 显示全部楼层

令人哑然的天大笑话

下面引用由顽石2009/02/24 01:31pm 发表的内容:
带尾巴“.0”的全体自然数依次排列在向右无限延伸的水平线上,再向左镜像对称翻,变成了全体小数。镜像对称对应,就是天然的一一对应!没有什么可怀疑的。如果不信,您可以去照照镜子,是不是左右翻了。
我问你的是在镜像对称之前所出的问题:你说“在向右无限延伸的水平线上的每个点,代表每个依次排列的自然数”---难道这线上只有整点?
 楼主| 发表于 2009-2-24 16:25 | 显示全部楼层

令人哑然的天大笑话

如果能够证明直线上的自然数整点与全体小数数量相同,就证明了一小段0至1线段中的点可数,就如同证明整个直线上的点也可数,因此,证明整个直线上的点数量与全体自然数数量相同。
发表于 2009-2-27 13:42 | 显示全部楼层

令人哑然的天大笑话

问题是你对应到的只是有限小数。不是所有小数
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-17 12:04 , Processed in 0.108845 second(s), 19 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表