|
∏(1-\(1\over P\))=\(e^{-γ}\over{ln(x)}\)推出\({ln(x)}e^γ\)=∏\(P\over{P-1}\), 所以\(({P\over{P-1}})^n\)=\(({ln}(x)e^γ)^n\)=\({ln}^n(x)e^{nγ}\),而最密三生素数的系数为:\({P^2(P-3)}\over(P-1)^3\),当P≥5时,为此形式,对于素数2,\({2^2(2-1)}\over(2-1)^3\)=\({1\over 2}{2^3\over(2-1)^3}\),同样素数3,\({3^2(3-2)}\over(3-1)^3\)=\({1\over 3}{3^3\over(3-1)^3}\),当素数P≥5后,\({P^2(P-3)}\over(P-1)^3\)=\({P^3\over(P-1)^3}{{P-3}\over P}\)=\(({P\over{P-1}})^3{(1-{3\over P})}\),把素数2,3的放进去:\(1\over 6\)∏\(({P\over{P-1}})^3{(1-{3\over P_i})}\),\(P_i\)≥5. P≥2. |
|