数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Large\textbf{热烈欢迎孬种自蛋自捣自跟自贴}\color{red}{\textbf{骚扰本版块}}\)

[复制链接]
发表于 2024-8-27 07:09 | 显示全部楼层
elim 发表于 2024-8-27 06:46
仿范副 \(0.9,0.99,\ldots\) 顽瞎测 \(A_k, A_{k+1},\ldots\lim A_n:\) 对孬
即便 \(\displaystyle\lim_{ ...


elim你的【无穷交就是一种骤变】不能比较两个集合是否等势!如集合A=\(\mathbb{N}\),B=\(\{m:m=2n,n∈\mathbb{N}\}\)。若按你的“臭变”之法:\(\forall n∈\mathbb{N},n\notin B\implies B=\phi\),显然这与经得起逻辑演译的事实(即\(\overline{\overline{A}}=\overline{\overline{B}}\)矛盾。所以你的“臭便”之法不能比较两集合是否等势。当然更不能指望用“臭便”之法证明两集合相等了!!
回复 支持 反对

使用道具 举报

发表于 2024-8-27 12:50 | 显示全部楼层
elim 发表于 2024-8-27 07:59
仿范副 \(0.9,0.99,\ldots\) 顽瞎测 \(A_k, A_{k+1},\ldots\lim A_n:\) 对孬
即便 \(\displaystyle\lim_{ ...


elim先生认为【数学世界没有时间但数学演绎有次序. 这样一个变换的前后两种状况被
形象地称为变化,而这种变化无一例外都是骤变。】elim先生在这种认识的基础上提出了如下的定理,并给出证明,为使用方便我们称这个定理为骤变定理:
【定理】\(\forall n∈N(n\notin B\subseteq N)\implies  B=\phi\).
【证明】
\(\forall n∈N(n\notin B\subseteq N)\implies\)\(N\cap B=\phi)\)\(\land (B\subseteq N)\implies B=B\cap N=\phi\).
对于elim先生的骤变定理有如下反例
反例1:设\(A=\mathbb{N}^+\),\(B=\{x:x=2n^2,n∈\}\).显然有集合A、B满足定理的题设条件,但\(B≠\phi\)!事实上\(\overline{\overline{B}}=\overline{\overline{\mathbb{N}^+}}\).
反例2:设\(A=\mathbb{N}^+\);\(B=\{x:x=2n,n∈\mathbb{N}\}\).
\(\quad\forall n∈\mathbb{N}^+\because n≠2n\therefore n\notin B\),\(\quad\therefore B=\phi\).但\(\overline{\overline{B}}=\(\overline{\overline{\mathbb{N}^+}}\)
反例3:对elim先生的单减集列\(\{A_n:=\{m∈N:m>n\}\}\),设\(\mathscr{A}=\displaystyle\bigcup_{n =1}^∞ A_n^c\);\(\mathscr{B}=\displaystyle\bigcap_{n =1}^∞ A_n\)。\(\therefore\quad B=\phi\),但由周民强《实变函数论》定义1.8、1.9有\(\overline{\overline{\displaystyle\bigcup_{n =1}^∞ A_n^c}}=\)\(\overline{\overline{\displaystyle\bigcap_{n =1}^∞ A_n}}\).\(\quad\therefore N_∞≠\phi\)!

当然类似的反例还多,因此elim先生的骤变定理不是【周民强介绍的那点集论的简单推论】.至于【春先生可以弄懂弄熟一阶逻辑】的建议我会考虑。但我绝不盲从一切借谓词逻演译之名,反对现行数学理论之实的说教!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-8-27 17:42 | 显示全部楼层
仿范副 \(0.9,0.99,\ldots\) 顽瞎测 \(A_k, A_{k+1},\ldots\lim A_n:\) 对孬
即便 \(\displaystyle\lim_{m\to\infty}m=\alpha\in\mathbb{N},\;\lim_{m\to\infty}(m+j)=\alpha+j\in\mathbb{N}\)
仍有 \(\alpha+j\not\in A_{\alpha+j}\) 进而仍有 \(\alpha+j\not\in N_{\infty}\;(j=0,1,2,\ldots)\)

所以兽医站而不是医院,才是根治孬种的去处。
那马户不知道他是一头驴,那又鸟不知道他是一只鸡
打西边来了一个小伙,乃华夏的子弟......

回复 支持 反对

使用道具 举报

发表于 2024-8-28 06:25 | 显示全部楼层
elim 发表于 2024-8-27 17:42
仿范副 \(0.9,0.99,\ldots\) 顽瞎测 \(A_k, A_{k+1},\ldots\lim A_n:\) 对孬
即便 \(\displaystyle\lim_{ ...

elim【 \( A_k,A_{k++1},…,\displaystyle\lim_{n→∞} A_n\)是不完全归纳法,也是与你和范副用分析方法寻找证明的途径是一致的。如此表示的优点在于\(\displaystyle\lim_{n→∞}A_n)\)中的n→∞是由Peano axioms从1逐次递加直至无穷的。所以\(\displaystyle\lim_{n→∞}\{n+1,n+2,……\}\)中的数都是由Peano axioms唯一确定的。elim认为【即便 \(\displaystyle\lim_{m→∞}m=α∈N\),\(\displaystyle\lim_{m→∞}(m+j)∈N\),仍有 α+j\notin A_{α+j}\)进而仍有 α+j\notin N_∞\)(j=0,1,2,…)】elim先生\(\displaystyle\lim_{m→∞} A_m=A_α\)是\(\displaystyle\bigcap_{m=1}^∞ A_m\)的极限集,\(A_{α+j}\)不在极限集定义之中,所以α+j(j=1,2,3,……)只能是\(A_α\)的元素。所以\(N_∞=N_α≠\phi\)!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-8-28 07:21 | 显示全部楼层
春风晚霞 发表于 2024-8-27 16:09
elim【 \( A_k,A_{k++1},…,\displaystyle\lim_{n→∞} A_n\)是不完全归纳法,也是与你和范副用分析方 ...


孬种连数学归纳法都不懂。\(0.\underset{n 个 9}{\underbrace{9\ldots 9}} = 1-10^{-n} < 1\) 归纳一下就有 \(0.\dot 9 < 1\) 了?
回复 支持 反对

使用道具 举报

发表于 2024-8-28 08:20 | 显示全部楼层
elim 发表于 2024-8-28 07:21
孬种连数学归纳法都不懂。\(0.%underset{n 个 9}{%underbrace{9\ldots 9}} = 1-10^{-n} < 1\) 归纳一下 ...

根据黑格尔的”进展中的自我完成”,0.9,0.99,0.999,……自我完成的结果是1。证明\(0.\dot 9=1\)的最佳方法是利用有理数的稠密性和反证法。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-8-28 08:27 | 显示全部楼层
范副孬,你也对孬,\([n,\infty)\) 被孬种归纳一下是不是也有 \(\displaystyle\lim_{n\to\infty}[n,\infty)\ne\varnothing\) 了?蠢疯你个畜生?
回复 支持 反对

使用道具 举报

发表于 2024-8-28 10:20 | 显示全部楼层
elim 发表于 2024-8-28 08:27
范副孬,你也对孬,\([n,\infty)\) 被孬种归纳一下是不是也有 \(\displaystyle\lim_{n\to\infty}[n,\infty) ...

根据周民强《实变函数论》p9页定义1.8,\(\displaystyle\lim_{n→∞}[n,∞)=[∞,∞)=\phi\)!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-8-28 10:26 | 显示全部楼层
春风晚霞 发表于 2024-8-27 19:20
根据周民强《实变函数论》p9页定义1.8,\(\displaystyle\lim_{n→∞}[n,∞)=[∞,∞)=\phi\)!

孬种睁眼说瞎话,只能自爆扯谎滚屁滔滔的畜生本质。
回复 支持 反对

使用道具 举报

发表于 2024-8-28 10:51 | 显示全部楼层
elim 发表于 2024-8-28 10:26
孬种睁眼说瞎话,只能自爆扯谎滚屁滔滔的畜生本质。

你到说说你是怎样认识周民强的例5\(\displaystyle\lim_{m→∞}[n,∞)=\phi\)的?该不是一句“周民强默认\(\displaystyle\lim_{m→∞}[n,∞)=\phi\)”了事吧?周民强凭什么有这个默认?这样的默认自不自洽?这样的默认与你的“臭便”有何异同?这个默认是单减集列极限集的偶然还是必然!你在你的“能自,爆扯谎滚屁滔滔的”帖子中用周民强定义多,还是用这个默认多?真是畜生一个!/size
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-11 16:43 , Processed in 0.091879 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表