数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge\color{Purple}{\textbf{孬种的无穷大自然数妄想}}\)

[复制链接]
发表于 2024-10-5 06:09 | 显示全部楼层
elim 发表于 2024-10-4 21:31
孬种懂了哪一大堆就会有 \(\omega\in A_\omega=\{m\in\mathbb{N}: m>\omega\}\) ?
如果上式成立,当然就 ...


      elim杠精于 2024-10-4 22:27发帖说【孬种扯了楼上一大堆就会有\(ω∈A_ω=\{m∈\mathbb{N}:m>ω\}\) ?
如果上式成立,当然就有 \(ω∈\mathbb{N}\subset\mathbb{R}=(∞,∞)\) 这表示ω
是\(\mathbb{N}\) 的保序连续扩充\(\mathbb{R}\)的成员,而(∞,∞)不含超限数.孬种此番倒腾,除了显摆种够孬,还有啥作用,自蛋自捣?孬种作孬千头万绪,归根结底人太蠢种太孬】
      elim的帖子不长,仍透露出e氏以下无知:(1)、e氏无视皮亚诺公理(Peano axioms)或Cantor正整数生成法则;(2)、e氏混淆集合序号n和集\(A_n\)的从属关系。
        为回答e氏【孬种此番倒腾,除了显摆种够孬,还有啥作用,自蛋自捣?孬种作孬千头万绪,归根结底人太蠢种太孬】之说,现将e氏之惑重释于后:
      (1)、自然数是人类最早认识的数系,1779年Peano提出了著名的皮亚诺公理(Peano axioms),1887年Cantor为完善他的\(\color{red}{集合是整体完成了的实无穷}\)理论,提出了他的正整数生成法则。现行教科书称Cantor的正整数生成为“重构自然数”(参见清华大学张峰 陶然著《集合论基础》),Cantor称他的正整数生成法则比(Peano axioms)更自然(参见Cantor《超穷数理论基础》)。在《超穷数理论基础》一书中,ω是想像出来的没有前趋(像传统自然数中的0一样)的新数。Cantor正整数理论中把∞分为适当的无穷和不适当的无穷两种形态。Cantor认为“ω表示适当的无穷,而∞表示不适当的无穷”(参见Cantor《超穷数理论基础》P42页第14~15行)。”Cantor又解释说“ω表示(I)的整体和(I)中的数之间的一种相继次序”(参见Cantor《超穷数理论基础》P43页3~4行)。elim【\(ω∈\mathbb{N}\subset\mathbb{R}=(∞,∞)\) 这表示ω是\(\mathbb{N}\) 的保序连续扩充\(\mathbb{R}\)的成员,而(∞,∞)不含超限数.】这恰好反映出elim对\(\mathbb{N}\) 的保序连续扩充\(\mathbb{R}\)中(∞,∞)的∞的不理解,elim你又凭什么说(-∞,∞)中就不含ω+1,ω+2,…这类正整数呢?注意康托尔有穷基数的无穷数列1,2,…,\(\nu\),ω+1,ω+2,…中没有单独的ω。
        (2)、根据现行教科书极限集的定义,集列\(\{A_n=\{m∈\mathbb{N}:m>n\}\}\)的极限集\(\displaystyle\lim_{n→∞} A_n=\displaystyle\bigcap_{n=1}^∞ A_n=\{ω+1,ω+2,…\}\);从Cantr有穷基数的无穷序列:1,2,…,\(\nu\),ω+1,ω+2,…知\(n∈\mathbb{N}\);而\(\displaystyle\lim_{n→∞} A_n\subseteq\{ω+1,ω+2,…,ω+\nu\}\);所以足见【\(ω∈A_ω=\{m∈\mathbb{N}:m>ω\}\)】是e氏为死扛【无穷交就是一种骤变】是在作孬!
回复 支持 反对

使用道具 举报

发表于 2024-10-5 08:33 | 显示全部楼层

      elim杠精于 2024-10-4 22:27发帖说【孬种扯了楼上一大堆就会有\(ω∈A_ω=\{m∈\mathbb{N}:m>ω\}\) ?
如果上式成立,当然就有 \(ω∈\mathbb{N}\subset\mathbb{R}=(∞,∞)\) 这表示ω
是\(\mathbb{N}\) 的保序连续扩充\(\mathbb{R}\)的成员,而(∞,∞)不含超限数.孬种此番倒腾,除了显摆种够孬,还有啥作用,自蛋自捣?孬种作孬千头万绪,归根结底人太蠢种太孬】
      elim的帖子不长,仍透露出e氏以下无知:(1)、e氏无视皮亚诺公理(Peano axioms)或Cantor正整数生成法则;(2)、e氏混淆集合序号n和集\(A_n\)的从属关系。
        为回答e氏【孬种此番倒腾,除了显摆种够孬,还有啥作用,自蛋自捣?孬种作孬千头万绪,归根结底人太蠢种太孬】之说,现将e氏之惑重释于后:
      (1)、自然数是人类最早认识的数系,1779年Peano提出了著名的皮亚诺公理(Peano axioms),1887年Cantor为完善他的\(\color{red}{集合是整体完成了的实无穷}\)理论,提出了他的正整数生成法则。现行教科书称Cantor的正整数生成为“重构自然数”(参见清华大学张峰 陶然著《集合论基础》),Cantor称他的正整数生成法则比(Peano axioms)更自然(参见Cantor《超穷数理论基础》)。在《超穷数理论基础》一书中,ω是想像出来的没有前趋(像传统自然数中的0一样)的新数。Cantor正整数理论中把∞分为适当的无穷和不适当的无穷两种形态。Cantor认为“ω表示适当的无穷,而∞表示不适当的无穷”(参见Cantor《超穷数理论基础》P42页第14~15行)。”Cantor又解释说“ω表示(I)的整体和(I)中的数之间的一种相继次序”(参见Cantor《超穷数理论基础》P43页3~4行)。elim【\(ω∈\mathbb{N}\subset\mathbb{R}=(∞,∞)\) 这表示ω是\(\mathbb{N}\) 的保序连续扩充\(\mathbb{R}\)的成员,而(∞,∞)不含超限数.】这恰好反映出elim对\(\mathbb{N}\) 的保序连续扩充\(\mathbb{R}\)中(∞,∞)的∞的不理解,elim你又凭什么说(-∞,∞)中就不含ω+1,ω+2,…这类正整数呢?注意康托尔有穷基数的无穷数列1,2,…,\(\nu\),ω+1,ω+2,…中没有单独的ω。
        (2)、根据现行教科书极限集的定义,集列\(\{A_n=\{m∈\mathbb{N}:m>n\}\}\)的极限集\(\displaystyle\lim_{n→∞} A_n=\displaystyle\bigcap_{n=1}^∞ A_n=\{ω+1,ω+2,…\}\);从Cantr有穷基数的无穷序列:1,2,…,\(\nu\),ω+1,ω+2,…知\(n∈\mathbb{N}\);而\(\displaystyle\lim_{n→∞} A_n\subseteq\{ω+1,ω+2,…,ω+\nu\}\);所以足见【\(ω∈A_ω=\{m∈\mathbb{N}:m>ω\}\)】是e氏为死扛【无穷交就是一种骤变】是在作孬!
回复 支持 反对

使用道具 举报

发表于 2024-10-5 13:20 | 显示全部楼层

      elim杠精于 2024-10-4 22:27发帖说【孬种扯了楼上一大堆就会有\(ω∈A_ω=\{m∈\mathbb{N}:m>ω\}\) ?
如果上式成立,当然就有 \(ω∈\mathbb{N}\subset\mathbb{R}=(∞,∞)\) 这表示ω
是\(\mathbb{N}\) 的保序连续扩充\(\mathbb{R}\)的成员,而(∞,∞)不含超限数.孬种此番倒腾,除了显摆种够孬,还有啥作用,自蛋自捣?孬种作孬千头万绪,归根结底人太蠢种太孬】
      elim的帖子不长,仍透露出e氏以下无知:(1)、e氏无视皮亚诺公理(Peano axioms)或Cantor正整数生成法则;(2)、e氏混淆集合序号n和集\(A_n\)的从属关系。
        为回答e氏【孬种此番倒腾,除了显摆种够孬,还有啥作用,自蛋自捣?孬种作孬千头万绪,归根结底人太蠢种太孬】之说,现将e氏之惑重释于后:
      (1)、自然数是人类最早认识的数系,1779年Peano提出了著名的皮亚诺公理(Peano axioms),1887年Cantor为完善他的\(\color{red}{集合是整体完成了的实无穷}\)理论,提出了他的正整数生成法则。现行教科书称Cantor的正整数生成为“重构自然数”(参见清华大学张峰 陶然著《集合论基础》),Cantor称他的正整数生成法则比(Peano axioms)更自然(参见Cantor《超穷数理论基础》)。在《超穷数理论基础》一书中,ω是想像出来的没有前趋(像传统自然数中的0一样)的新数。Cantor正整数理论中把∞分为适当的无穷和不适当的无穷两种形态。Cantor认为“ω表示适当的无穷,而∞表示不适当的无穷”(参见Cantor《超穷数理论基础》P42页第14~15行)。”Cantor又解释说“ω表示(I)的整体和(I)中的数之间的一种相继次序”(参见Cantor《超穷数理论基础》P43页3~4行)。elim【\(ω∈\mathbb{N}\subset\mathbb{R}=(∞,∞)\) 这表示ω是\(\mathbb{N}\) 的保序连续扩充\(\mathbb{R}\)的成员,而(∞,∞)不含超限数.】这恰好反映出elim对\(\mathbb{N}\) 的保序连续扩充\(\mathbb{R}\)中(∞,∞)的∞的不理解,elim你又凭什么说(-∞,∞)中就不含ω+1,ω+2,…这类正整数呢?注意康托尔有穷基数的无穷数列1,2,…,\(\nu\),ω+1,ω+2,…中没有单独的ω。
        (2)、根据现行教科书极限集的定义,集列\(\{A_n=\{m∈\mathbb{N}:m>n\}\}\)的极限集\(\displaystyle\lim_{n→∞} A_n=\displaystyle\bigcap_{n=1}^∞ A_n=\{ω+1,ω+2,…\}\);从Cantr有穷基数的无穷序列:1,2,…,\(\nu\),ω+1,ω+2,…知\(n∈\mathbb{N}\);而\(\displaystyle\lim_{n→∞} A_n\subseteq\{ω+1,ω+2,…,ω+\nu\}\);所以足见【\(ω∈A_ω=\{m∈\mathbb{N}:m>ω\}\)】是e氏为死扛【无穷交就是一种骤变】是在作孬!
回复 支持 反对

使用道具 举报

发表于 2024-10-6 07:35 | 显示全部楼层

       elim孬种于 2024-10-5 18:02发表的新帖【孬种靠楼上的胡扯就会有 \(\omega\in A_\omega\{m\in\mathbb{N}: m>\omega\}\) ?
\(\omega\) 属于大于它的元素所成的集合?蠢疯的种之孬,前无古人后无来者。另外如果上式成立,当然就有 \(\omega\in\mathbb{N}\subset\mathbb{R}=(-\infty,\infty)\) 这表示\(\omega\)是\(\mathbb{N}\) 的保序连续域扩充 \(\mathbb{R}\) 的成员,而\((-\infty,\infty)\)不含超限数:若超穷数\(\omega\in\mathbb{R}=(-\infty,\infty)\), 则 \(n< \omega\,(\forall n\in\mathbb{N}).\)据有序城公理,\(0< \omega^{-1}< 1/n (\forall n\in\mathbb{N})\) 于是有
\(0< \omega^{-1}\le\displaystyle\lim_{n\to\infty}{\small\frac{1}{n}}=0\) 即 \(0< 0\) 的孬种矛盾!孬种此番倒腾,除了显摆种够孬,还有啥作用,自蛋自捣?孬种作孬千头万绪,归根结底人太蠢种太孬】进一步暴露了e氏反现行数学,也反他自己的丑恶嘴睑。
       (1)、elim顽固坚持反现行教科书极限集的定义。根据e氏自己给定的单减集列\(\{A_n=\{m∈N:m>n\}\}\)的定义式,我们有\(\displaystyle\lim_{n→∞} A_n=\displaystyle\bigcap_{n=1}^∞ A_n=\{ω+1,ω+2,…\}\)。elim自己对Cantor的《超穷数理论基础》和方嘉琳的《集合论》一无所知或知元甚少,还说康托尔的超穷数或方嘉琳的超限数是胡扯!甚至提出【\(\omega\in A_\omega\{m\in\mathbb{N}: m>\omega\}\) 】这样的既反现行数学理论,又反e氏自己的\(A_n=\{m∈N:m>n\}\)定义的怪问。稍具数学常识的网友都能正确认识到这一怪问混淆了\(A_n\)中的\(n∈\mathbb{N},ω+j∈\displaystyle\lim_{n→∞} A_n\)的本质区别!不难看出e氏的怪问是其\(A_n\)不含\(A_n^c\)中的数,所以\(A_n是空集\)的混帐逻辑的变种。故此\(\omega\in A_\omega\{m\in\mathbb{N}: m>\omega\}\)才是e氏【的种之孬,前无古人后无来者】!
       (2)、elim为坚持其\(A_n\)不含\(A_n^c\)中的数,所以\(A_n是空集\)的混帐逻辑思维,又提出了【 \(\omega\in\mathbb{N}\)\(\subset\mathbb{R}=(-\infty,\infty)\) 这表示\(\omega\)是\(\mathbb{N}\) 的保序连续域扩充 \(\mathbb{R}\) 的成员,而\((-\infty,\infty)\)不含超限数。】春风晚霞再次提请elim孬种注意,在康托尔超穷数理论中\(\color{red}{ω没有直接前趋,ω和∞的区別主要在于“ω表示适当的无穷,而∞表示不适当的无穷”(参见Cantor《超穷数理论基础》P42页第14至15行)}\}\),如果把康托尔的正整数实无穷集合记为\(\mathscr{N}\),那么〖\(n\omega+j\in\mathscr{N}\subset\mathbb{R}=(-\infty,\infty)\) 这表示\(\omega+j\)是\(\mathscr{N}\) 的保序连续域扩充 \(\mathbb{R}\) 的成员,所以\(\color{red}{(-\infty,\infty)含超限数}\)。〗
       (3)、因为若超穷数\(n\omega+j\in\mathbb{R}=(-\infty,\infty)\), 则 \(\forall n\in\mathscr{N})\), 于是有\(\displaystyle\lim_{n\to\infty}{\small\frac{1}{-n}}=\displaystyle\lim_{n\to\infty}{\small\frac{1}{n}}\)\(=\displaystyle\lim_{n\to\infty}{\small\frac{1}{n}}=0\) ,因此不会产生任何矛盾!
       由于elim根本不承认康托尔的\(\color{red}{实无穷正整数集}\),所以其认知永远囿于他认识的那个\(\mathbb{N}\)。所以必然导致【\(0< \omega^{-1}< 1/n (\forall n\in\mathbb{N})\) 于是有\(0< \omega^{-1}\le\displaystyle\lim_{n\to\infty}{\small\frac{1}{n}}=0\) 即 \(0< 0\) 的孬种矛盾!】【\(\mathbb{N}\)是可保序连续扩充成实数域的唯一有加法乘法么元的有序半环】亦纯属瞎扯!你有什么理由说明\(\mathscr{N}\)不是可保序连续扩充成实数域的有加法乘法么元的有序半环?难道Cantor的集合论与超穷数理论与Cantor的实数理论不兼容吗!?
       综上分析,elim的“逐点排查”或“无穷交就是一种骤变”\(\color{red}{除了显摆野种够孬,还有啥作用}\)?野种作孬千头万绪,归根结底人太蠢种太杂!
回复 支持 反对

使用道具 举报

发表于 2025-2-10 12:24 | 显示全部楼层
   Elim孬种,在标准分析中无穷大的定义是:若整序变量\(x_n\),由某项开始,其绝对值变成且保持′着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|\(x_n\)|>\(N_E\),则称变量\(x_n\)为无穷大(参见菲赫全哥尔茨《微积分学教程》四卷八册版笫一卷,第一分册P37页;及其《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义。所以你他娘的要证明\(\mathbb{N}_∞=\phi\),只须证明大于任意大数E>0的自然数n不存在,你他妈的能证明这样的自然数不存在吗?

点评

孬种蠢疯:标准分析的这个定义已经不是数,更不是自然数了.  发表于 2025-2-10 13:59
回复 支持 反对

使用道具 举报

发表于 2025-2-26 16:07 | 显示全部楼层
elim 发表于 2025-2-26 08:54
胡扯\(\small\omega\in\lim A_n=\bigcap A_n\)导致\(\small\omega\in A_\omega=\{m\in\mathbb{N}: m>\omega ...


(1)、 elim问【\(\displaystyle\lim_{n→∞}(n+j)\)与Weiestrass 极限定义没关系。那么它是什么?】
春风晚霞答:单减集极限集的定义是:\(\displaystyle\bigcap_{n=1}^∞ A_n\)=\(\displaystyle\lim_{n→∞} A_n\);单增集列极限集的定义是\(\displaystyle\bigcup_{n=1}^∞ A_n=\displaystyle\lim_{n→∞} A_n\)(参见周民强《实变函数论》P9页定义1.8);单调集列极限集都等于该集列定义式的极限(参见周民强《实变函数论》P9页例6);\(\displaystyle\lim_{n→∞}(n+j),j∈N\)是\(\displaystyle\lim_{n→∞}\{n+1,n+2,……,\}\)中元素的等价表示。\(\displaystyle\lim_{n→∞}(n+j)\)与Weiestrass 极限定义无直接联系。
(2) 、elim问【周民强将递降列的交\(\displaystyle\bigcap_{n=1}^∞ A_n\)定义为\(\displaystyle\lim_{n→∞} A_n\),那么\(\displaystyle\lim_{n→∞}A_n\)的定义是什么?】
春风晚霞答:\(\displaystyle\lim_{n→∞}A_n\)的定义就是对单调集列的定义式取极限。如单减集列\(\{A_n:=\{m∈N:m>n\}\}\)
极限集\(\displaystyle\lim_{n→∞}A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,……,\}\). elim请你在发帖时少说一些与学术无关的话,像“孬种,种孬”之类的话,估计你爷爷都不会如此称谓他的同龄人的。我们年龄相差甚大,望先生自重!
回复 支持 反对

使用道具 举报

发表于 2025-2-27 00:10 | 显示全部楼层
elim的\(H_∞=\displaystyle\bigcap_{n=1} A_n\)中的∞就是皮亚诺意义下的超穷序列1,2,…,\(\displaystyle\lim_{n→∞} n-1\),\(\displaystyle\lim_{n→∞} n,\displaystyle\lim_{n→∞} n+1\),\(\displaystyle\lim_{n→∞} n+2\),…中的\(\displaystyle\lim_{n→∞} n\),在皮亚诺意义下实正整数集中每个成员都有定义,否则逆用皮亚诺公理自然数集\(\mathbb{N}=\phi\)。根据elim所给\(A_n:=\{m∈\mathbb{N}:m>n\}\)
1)若m∈\(\displaystyle\bigcap_{n=1}^∞ A_n=N_∞\),则m∈\(A_{\displaystyle\lim_{n→∞} n}=\)\(\{\displaystyle\lim_{n→∞} n+1,\displaystyle\lim_{n→∞} n+2,…\}\),所以即使有\(m\notin A_m\)\(H_n\)也不会产生任何矛盾。
2)记\(v=\displaystyle\lim_{n→∞} n\),则对m∈\(\mathbb{N}\),都有m+1∈\(\{1,2,…,V,v+1,v+2,…\}\)。
3)因为\(v=\displaystyle\lim_{n→∞} n\)∈\(\mathbb{N}\),所以\(v+1\),\(v+2\),…都属于皮亚诺意义下的实正整数集。
注意:若\(v=\displaystyle\lim_{n→∞} n\)\(\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
由于elim根本就不知道什么是无穷?什么是超穷?其对无穷的认知还不及小学四年级的学生。所以在你的眼中除你的胡说八道外什么都通不过检验。elim一味胡搅蛮缠,打滚撒泼,真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-2-27 00:10 | 显示全部楼层
elim 发表于 2025-2-26 20:41
顽瞎目测孬种计算均无法通过以下验证:
命 \(\displaystyle H_\infty=\bigcap_{n=1}^\infty A_n,\;\;(A_n: ...

elim的\(H_∞=\displaystyle\bigcap_{n=1} A_n\)中的∞就是皮亚诺意义下的超穷序列1,2,…,\(\displaystyle\lim_{n→∞} n-1\),\(\displaystyle\lim_{n→∞} n,\displaystyle\lim_{n→∞} n+1\),\(\displaystyle\lim_{n→∞} n+2\),…中的\(\displaystyle\lim_{n→∞} n\),在皮亚诺意义下实正整数集中每个成员都有定义,否则逆用皮亚诺公理自然数集\(\mathbb{N}=\phi\)。根据elim所给\(A_n:=\{m∈\mathbb{N}:m>n\}\)
1)若m∈\(\displaystyle\bigcap_{n=1}^∞ A_n=N_∞\),则m∈\(A_{\displaystyle\lim_{n→∞} n}=\)\(\{\displaystyle\lim_{n→∞} n+1,\displaystyle\lim_{n→∞} n+2,…\}\),所以即使有\(m\notin A_m\)\(H_n\)也不会产生任何矛盾。
2)记\(v=\displaystyle\lim_{n→∞} n\),则对m∈\(\mathbb{N}\),都有m+1∈\(\{1,2,…,V,v+1,v+2,…\}\)。
3)因为\(v=\displaystyle\lim_{n→∞} n\)∈\(\mathbb{N}\),所以\(v+1\),\(v+2\),…都属于皮亚诺意义下的实正整数集。
注意:若\(v=\displaystyle\lim_{n→∞} n\)\(\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
由于elim根本就不知道什么是无穷?什么是超穷?其对无穷的认知还不及小学四年级的学生。所以在你的眼中除你的胡说八道外什么都通不过检验。elim一味胡搅蛮缠,打滚撒泼,真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-2-27 06:16 | 显示全部楼层
elim的\(H_∞=\displaystyle\bigcap_{n=1} A_n\)中的∞就是皮亚诺意义下的超穷序列1,2,…,\(\displaystyle\lim_{n→∞} n-1\),\(\displaystyle\lim_{n→∞} n,\displaystyle\lim_{n→∞} n+1\),\(\displaystyle\lim_{n→∞} n+2\),…中的\(\displaystyle\lim_{n→∞} n\),在皮亚诺意义下实正整数集中每个成员都有定义,否则逆用皮亚诺公理自然数集\(\mathbb{N}=\phi\)。根据elim所给\(A_n:=\{m∈\mathbb{N}:m>n\}\)
1)若m∈\(\displaystyle\bigcap_{n=1}^∞ A_n=N_∞\),则m∈\(A_{\displaystyle\lim_{n→∞} n}=\)\(\{\displaystyle\lim_{n→∞} n+1,\displaystyle\lim_{n→∞} n+2,…\}\),所以即使有\(m\notin A_m\),\(H_n\)也不会产生任何矛盾。
2)记\(v=\displaystyle\lim_{n→∞} n\),则对m∈\(\mathbb{N}\),都有m+1∈\(\{1,2,…,v,v+1,v+2,…\}\)。
3)因为\(v=\displaystyle\lim_{n→∞} n\)∈\(\mathbb{N}\),所以\(v+1\),\(v+2\),…都属于皮亚诺意义下的实正整数集。
注意:若\(v=\displaystyle\lim_{n→∞} n\)\(\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
由于elim根本就不知道什么是无穷?什么是超穷?其对无穷的认知还不及小学四年级的学生。所以在你的眼中除你的胡说八道外什么都通不过检验。elim一味胡搅蛮缠,打滚撒泼,真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-2-27 09:28 | 显示全部楼层
elim的\(H_∞=\displaystyle\bigcap_{n=1} A_n\)中的∞就是皮亚诺意义下的超穷序列1,2,…,\(\displaystyle\lim_{n→∞} n-1\),\(\displaystyle\lim_{n→∞} n,\displaystyle\lim_{n→∞} n+1\),\(\displaystyle\lim_{n→∞} n+2\),…中的\(\displaystyle\lim_{n→∞} n\),在皮亚诺意义下实正整数集中每个成员都有定义,否则逆用皮亚诺公理自然数集\(\mathbb{N}=\phi\)。根据elim所给\(A_n:=\{m∈\mathbb{N}:m>n\}\)
1)若m∈\(\displaystyle\bigcap_{n=1}^∞ A_n=N_∞\),则m∈\(A_{\displaystyle\lim_{n→∞} n}=\)\(\{\displaystyle\lim_{n→∞} n+1,\displaystyle\lim_{n→∞} n+2,…\}\),所以即使有\(m\notin A_m\),\(H_n\)也不会产生任何矛盾。
2)记\(v=\displaystyle\lim_{n→∞} n\),则对m∈\(\mathbb{N}\),都有m+1∈\(\{1,2,…,v,v+1,v+2,…\}\)。因为\(v=\displaystyle\lim_{n→∞} n\)∈\(\mathbb{N}\),所以\(v+1\),\(v+2\),…都属于皮亚诺意义下的实正整数集。
3)方程\(x+1=v\)的解是\(x=v-1\),所以x的前趋为\(v-2\)。
由于elim根本就不知道什么是无穷?什么是超穷?其对无穷的认知还不及小学四年级的学生。所以在你的眼中一切现行数学的命题,结论都通不过你的检验。elim一味胡搅蛮缠,打滚撒泼,真不要脸!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-2 02:59 , Processed in 0.106942 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表