关于elim《Peano排斥\(\displaystyle\lim_{n \to \infty}n\)》的回复
今天elim反复长表《peano排斥顽瞎\(\displaystyle\lim_{n \to \infty}n\)》的帖子,并且利用他的狗屁“底层逻辑”,“证明”了他的定理:自然数皆有限数.肉于elim的定理与现行数学违合,故扼要回复于后:
elim的【【定理】自然数皆有限数】是个伪命题,证明中【令ω为最小无穷序数】失实,根据无穷大自然数的定义,最小的无穷序数应该是那个预先给定的无论怎样大的自然数\(n_e\)的后继\(n_e+1\),由于\(n_e\)是确定的自然数,所以\(n_e+1\)也是确定的自然数。当然,根据皮亚诺公理,我们可依次写岀\(n_e+2\),\(n_e+3\)……\(n_e+k\),……直至\(n_e+\displaystyle\lim_{n \to \infty}n\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\),这也说明皮亚诺公理第二条支持\(\displaystyle\lim_{n \to \infty}n\in\mathbb{n}\)!同时皮亚诺公理第三条明确表示\(\mathbb{N}\)任何非0数都有前趋,由于\(\displaystyle\lim_{n \to \infty}n\),\(\displaystyle\lim_{n \to \infty}(n-1)\),…\(\displaystyle\lim_{n \to \infty}(n-k)\)…均非0。所以它们都有前趋。皮亚诺公理第三条确保了自然数由有限平稳、渐近(即并不存在从有限到无限的骤变)地过渡到无限.有效地避免了某君从自己的子孙中找不到祖宗,就断言自己没有祖宗的尴尬.所以皮亚诺公理是支持\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)的。从康托尔有穷基数的无穷序列:1,2,…,\(\nu(=\displaystyle\lim_{n \to \infty}n)\)看,确实有\(S=\{n\in\mathbb{N}<ω\)。但这个有穷基数的无穷序列也恰好明确表示\(\nu(=\displaystyle\lim_{n \to \infty}n)\in\mathbb{N}\).在自然数理论中皮亚诺、康托尔、冯\(\cdot\)诺依曼的理论是完全兼容,且高度一致的.如果某一家的理论证明了另一家的理论不自洽,那么一定是证明过程中哪里错了!!至于自然数集中的最大元的研究,你可参阅方嘉琳《集合论》P138页第五章[极大原理],和康托尔《超穷数理论基础》P43页、P45页关于新数ω的解读。自然数皆有限数这只是你的愿望,并不是经逻辑演译确定的事实。无数事实证明你离开循环论证,是证明不了自然数皆而限数的. |