数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

孬种搅局02\(\Huge\color{green}{\mathbb{N}\textbf{没有无穷元}}\)

[复制链接]
 楼主| 发表于 2025-5-30 22:40 | 显示全部楼层
春风晚霞 发表于 2025-5-29 23:18
冯\(\cdot\)诺依曼自然数构成法\(u+1=u\cup\{u\}\)的“=”两边要么同时是数,要么同时是集合。决无一个“数 ...

孬种不知道集合论是全部数学的基础
这话是什么意思啊, 哈哈. 凡数都是集
合! 只有集论白痴顽瞎才发楼上烂贴.
回复 支持 反对

使用道具 举报

发表于 2025-5-31 03:20 | 显示全部楼层

       冯\(\cdot\)诺依曼自然数构成法\(u+1=u\cup\{u\}\)的“=”两边要么同时是数,要么同时是集合。决无一个“数”等于一个集合之理。并且“=”号数学含义是:“=”的左边是“=”右边的后继。等式\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}n\)是集合等式。而对\(n\in\mathbb{N}\)显然亦有\(n=\{0,1,2,…\}\)的“=”则表示集合n是集合\(\{0,1,2,…(n-1)\}\)后继,即集合\(\{0,1,2.…,n\}\)是集合\(\{0,1,2,\)\(…(n-1)\}\)的后继。虽然集合\(\{0,1,2,\)\(…(n-1)\}\)\(\subsetneq\mathbb{N}\),但集合\(sup\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}=\)\(\mathbb{N}\) .所以没有\(n<\mathbb{N}\)之说(数与集合的关系只有\(\in\)或\(\notin\)两种情形,而无“<”、“>”关系)。当然也就更没有\(\mathbb{N}\)\(\subsetneq\)\(\mathbb{N}\)之理!因为集合\(\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}\) ,所以\((\displaystyle\lim_{n \to \infty}n\)\(\subseteq\mathbb{N})\)\(\land(\mathbb{N}\subseteq\displaystyle\lim_{n \to \infty}n)\)(两集合相等的充分必要条件). 所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\) .
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-7-7 23:08 | 显示全部楼层
数是具有特殊结构的集合,顽瞎的 lim n 走眼目测
不合乎数列极限,也不合集列极限

归纳集\(\mathbb{N}\)的最小性是自然数皆有限数的根源:
令\(\mathbb{N} ’=\{m\in\mathbb{N}:\;m<  v\}\)(\(v\)为最小无穷数)
易见\(\mathbb{N}’\)是归纳集.据皮亚诺公理第五条(等价于
\(\mathbb{N}\)无真归纳子集即\(\mathbb{N}\)是最小归纳集)
所以\(\color{red}{\mathbb{N}=\mathbb{N}'}\)只含有限数(当然有限数有无穷多).

蠢疯顽瞎的反康托皮亚诺驴滚也帮不了APB
回复 支持 反对

使用道具 举报

发表于 2025-7-8 05:56 | 显示全部楼层

       elim孬种,除你以外谁也不会妄图推翻\(\forall n\in\mathbb{N}\)\((n<n+1)\)!你的命题正好说明超穷自然数存在的合理性。因为由皮亚诺公理第二条,\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(否则\(\mathbb{N}=\phi\))的后继\(\displaystyle\lim_{n \to \infty}n\)+1也是自然数!故此超穷自然数存在的合理性得证!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-30 23:11 , Processed in 0.088865 second(s), 12 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表