数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\color{navy}\star{\textbf{ 极限概念超越皮亚诺理论}}\)

[复制链接]
发表于 2025-7-18 08:27 | 显示全部楼层
elim 发表于 2025-7-18 08:19
不管啥主题, 二话不说直接开滚, 畜生不如.
回到主贴
由\(\forall n\in\mathbb{N}\,(n+1>n)\) 知自然数子 ...

同样的帖子你删了发,发了又删,删了又发,你确实是狗屎吃多了撑的!
回复 支持 反对

使用道具 举报

发表于 2025-7-18 11:13 | 显示全部楼层
elim 发表于 2025-7-18 08:34
不管啥主题, 二话不说直接开滚, 畜生不如.
回到主贴
由\(\forall n\in\mathbb{N}\,(n+1>n)\) 知自然数子 ...


【原文】滚驴指望啼猿声驴打滚获戈培尔效应,畜生不如
\(\color{red}{【评述】}\)elim不是数学人,倒像十足的街娃混混。elim辩论数学简直像泼妇骂街,一篇数学帖子,学术陈述不多,与学术无关的流氓语言几乎渗半。确实畜生不如。
【原文】1.因康托的超穷数理论并没有改写自然数定义及皮亚诺公理,滚驴的有关援引歪曲直接泡汤.
\(\color{red}{【评述】}\)康托尔确实【没有改写自然数定义及皮亚诺公理】,但【自然数皆有限数】既然皮亚诺的自然数定义,也非皮亚托尔的自然数定义,而是elim狗屎吃多了发的骚疯。从康托尔有穷基数的无穷序列1,2,3,…,\(\nu-1\),\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),\(\omega+1\),\(\omega+2\),…(参见康托尔《超穷数理论基础》P42,P43,P44页)知\(\nu(=\displaystyle\lim_{n \to \infty}n)\).从皮亚诺公理第二条:“每个自然数有唯一后继:若a是自然数,则其后继a'也是自然数”看仍有\(\nu(=\displaystyle\lim_{n \to \infty}n)\)。所以混球说\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\notin\mathbb{N}\)是赤裸裸地反现行数学言行!
【原文】2 称归纳证法为循环论证, 是反皮亚诺的炒作.
\(\color{red}{【评述】}\)你在认定\(S=\{m|m为有限数自然数\}\)的基础上,运用皮亚诺公理第五条(即归纳原则)归纳出S中的自然数皆有限数,这本生就是循环论证。你根本得不出的\(S=\mathbb{N}\)!所以你妄图用你的底层逻辑把自然数集“骤变”成有限自然数所组成的集才是反皮亚诺的炒作!
【原文】3\(\displaystyle\lim_{n \to \infty}\{1,2,…,\displaystyle\lim_{n \to \infty}n\}\)是顽瞎目测, 无Peano 公理依据, 骤变属哲学与数学证明不搭.
\(\color{red}{【评述】}\)你把用单调集列极限集的定义求极限集的应运称为目测法,而把你那个挂一漏万的“骤变”之法叫做精确计算,简直不知羞!你凭什么说由2是1的后继,3是2 的后继,…,k+1是k后继,…\(\displaystyle\lim_{n \to \infty}n\)是\(\displaystyle\lim_{n \to \infty}n-1\)的后继……这种不完全归纳法说成【无Peano 公理依据】。其实,这种不完全归纳的依据本身就是Peano 公理第二条\(a\)是自然数\(a\)后继\(a’=a+1\)也是自然数。你还要个什么Peano 公理依据?不管【无穷交就是一种骤变】属于什么范畴,单调递减集列的极限集等于空集就是一种货真价实的“臭便”!
【原文】4滚驴称\(n_e\)是有限自然数, 称其后继\(n_e+1\)为无穷大自然数. 难道滚驴是活活吃狗屎吃傻的?
\(\color{red}{【评述】}\)由于\(n_e\)是预先给定的无论怎样大的自然数,所以【称\(n_e\)是有限自然数, 称其后继\(n_e+1\)为无穷大自然数】这是符合无穷大自然数的定义的。这是现行教育框架下小学生都知道的常识。所以,你他娘的才是【滚驴是活活吃狗屎吃傻】了。
【原文】5若\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\),则\(m=v+1\),且\(m>v\)这与\(\displaystyle\lim_{n \to \infty}n\)为\(\mathbb{N}\)上界矛盾。滚驴已决然入魔。
\(\color{red}{【评述】}\)若\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\),则\(m=v+1\in\mathbb{N}\)Peano 公理的符号表述,它不仅不【与\(\displaystyle\lim_{n \to \infty}n\)为\(\mathbb{N}\)上界矛盾】,反而说明Peano 公理与康托尔实正整数第一生成法则一致。
【原文】6据集论概括原则\(S=\{m|m为有限数自然数\}\)自洽, 满全部皮亚诺公理. 据皮亚诺公理第五条得\(S=\mathbb{N}\)故自然数皆有限数且\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)可见自然数皆有限数是皮亚诺公理的简单推论.
\(\color{red}{【评述】}\)由你的\(S=\{m|m为有限数自然数\}\)并不自洽,也归纳不出 \(S=\mathbb{N}\),因为\(S=\{m|m为有限数自然数\}\)对后继运算不封闭。并且若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
【原文】7据 6 无穷\(\lim n=lim(n-k)\)\((\forall k∈N)\)没有自然数前趋, 歪说因为\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\implies\)\(\mathbb{N}=\phi\)泡汤。
\(\color{red}{【评述】}\)【\(lim n=lim(n-k)(\forall k∈N)\)没有自然数前趋】这只是elim的臆想,事实上\(\displaystyle\lim_{n \to \infty}(n-1)\)就是\(\displaystyle\lim_{n \to \infty}n\)的直接前趋。按elim的说法自然数是从某一有限数α直接“骤变”到上界\(\displaystyle\lim_{n \to \infty}n\)的。那么这个有限数α就是\(\displaystyle\lim_{n \to \infty}n\)的直接前趋。所以泡汤的不是命题若\(\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N},则\mathbb{N}=\phi\),而是\(\displaystyle\lim_{n \to \infty}n\)没有直接,所以\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)反现行数学!
【原文】试问有谁怀疑滚驴蠢疯与傻蛋APB协力反康托?
\(\color{red}{【评述】}\)春风晚霞与APB先生都认同皮亚诺的无穷数理论,皮亚诺的无穷数是康托尔超穷数的基础,所以只有认同无穷数,才能更进一步认识超穷数。在这个问题上何来反康托之说?另外APB比你更男人,也比你有担当。你全面反对皮亚诺的无穷数理论和康托尔的超穷数理论,你敢承认帐吗?你有半点愧疚吗?!

回复 支持 反对

使用道具 举报

发表于 2025-7-18 21:38 | 显示全部楼层
elim 发表于 2025-7-18 21:14
不管啥主题, 二话不说直接开滚, 畜生不如.
回到主贴
由\(\forall n\in\mathbb{N}\,(n+1>n)\) 知自然数子 ...


【原文】滚驴指望啼猿声驴打滚获戈培尔效应,畜生不如
\(\color{red}{【评述】}\)elim不是数学人,倒像十足的街娃混混。elim辩论数学简直像泼妇骂街,一篇数学帖子,学术陈述不多,与学术无关的流氓语言几乎渗半。确实畜生不如。
【原文】1.因康托的超穷数理论并没有改写自然数定义及皮亚诺公理,滚驴的有关援引歪曲直接泡汤.
\(\color{red}{【评述】}\)康托尔确实【没有改写自然数定义及皮亚诺公理】,但【自然数皆有限数】既非皮亚诺的自然数定义,也非康托尔的自然数定义,而是elim狗屎吃多了发的骚疯。从康托尔有穷基数的无穷序列1,2,3,…,\(\nu-1\),\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),\(\omega+1\),\(\omega+2\),…(参见康托尔《超穷数理论基础》P42,P43,P44页)知\(\nu(=\displaystyle\lim_{n \to \infty}n)\)是自然数.从皮亚诺公理第二条:“每个自然数有唯一后继:若a是自然数,则其后继a'也是自然数”看仍有\(\nu(=\displaystyle\lim_{n \to \infty}n)\)是自然数。所以混球说\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\notin\mathbb{N}\)是赤裸裸地反现行数学言行!
【原文】2 称归纳证法为循环论证, 是反皮亚诺的炒作.
\(\color{red}{【评述】}\)你在认定\(S=\{m|m为有限数自然数\}\)的基础上,运用皮亚诺公理第五条(即归纳原则)归纳出S中的自然数皆有限数,这本生就是循环论证。你根本得不出的\(S=\mathbb{N}\)!所以你妄图用你的底层逻辑把自然数集“骤变”成有限自然数所组成的集才是反皮亚诺的炒作!
【原文】3\(\displaystyle\lim_{n \to \infty}\{1,2,…,\displaystyle\lim_{n \to \infty}n\}\)是顽瞎目测, 无Peano 公理依据, 骤变属哲学与数学证明不搭.
\(\color{red}{【评述】}\)你把用单调集列极限集的定义求极限集的应运称为目测法,而把你那个挂一漏万的“骤变”之法叫做精确计算,简直不知羞!你凭什么说由2是1的后继,3是2 的后继,…,k+1是k后继,…\(\displaystyle\lim_{n \to \infty}n\)是\(\displaystyle\lim_{n \to \infty}n-1\)的后继……这种不完全归纳法说成【无Peano 公理依据】。其实,这种不完全归纳的依据本身就是Peano 公理第二条\(a\)是自然数\(a\)后继\(a’=a+1\)也是自然数。你还要个什么Peano 公理依据?不管【无穷交就是一种骤变】属于什么范畴,单调递减集列的极限集等于空集就是一种货真价实的“臭便”!
【原文】4滚驴称\(n_e\)是有限自然数, 称其后继\(n_e+1\)为无穷大自然数. 难道滚驴是活活吃狗屎吃傻的?
\(\color{red}{【评述】}\)由于\(n_e\)是预先给定的无论怎样大的自然数,所以【称\(n_e\)是有限自然数, 称其后继\(n_e+1\)为无穷大自然数】这是符合无穷大自然数的定义的。这是现行教育框架下小学生都知道的常识。所以,你他娘的才是【滚驴是活活吃狗屎吃傻】了。
【原文】5若\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\),则\(m=v+1\),且\(m>v\)这与\(\displaystyle\lim_{n \to \infty}n\)为\(\mathbb{N}\)上界矛盾。滚驴已决然入魔。
\(\color{red}{【评述】}\)若\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\),则\(m=v+1\in\mathbb{N}\)Peano 公理的符号表述,它不仅不【与\(\displaystyle\lim_{n \to \infty}n\)为\(\mathbb{N}\)上界矛盾】,反而说明Peano 公理与康托尔实正整数第一生成法则一致。
【原文】6据集论概括原则\(S=\{m|m为有限数自然数\}\)自洽, 满全部皮亚诺公理. 据皮亚诺公理第五条得\(S=\mathbb{N}\)故自然数皆有限数且\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)可见自然数皆有限数是皮亚诺公理的简单推论.
\(\color{red}{【评述】}\)由你的\(S=\{m|m为有限数自然数\}\)并不自洽,也归纳不出 \(S=\mathbb{N}\),因为\(S=\{m|m为有限数自然数\}\)对后继运算不封闭。并且若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
【原文】7据 6 无穷\(\lim n=lim(n-k)\)\((\forall k∈N)\)没有自然数前趋, 歪说因为\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\implies\)\(\mathbb{N}=\phi\)泡汤。
\(\color{red}{【评述】}\)【\(lim n=lim(n-k)(\forall k∈N)\)没有自然数前趋】这只是elim的臆想,事实上\(\displaystyle\lim_{n \to \infty}(n-1)\)就是\(\displaystyle\lim_{n \to \infty}n\)的直接前趋。按elim的说法自然数是从某一有限数α直接“骤变”到上界\(\displaystyle\lim_{n \to \infty}n\)的。那么这个有限数α就是\(\displaystyle\lim_{n \to \infty}n\)的直接前趋。所以泡汤的不是命题若\(\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N},则\mathbb{N}=\phi\),而是\(\displaystyle\lim_{n \to \infty}n\)没有直接,所以\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)反现行数学!
【原文】试问有谁怀疑滚驴蠢疯与傻蛋APB协力反康托?
\(\color{red}{【评述】}\)春风晚霞与APB先生都认同皮亚诺的无穷数理论,皮亚诺的无穷数是康托尔超穷数的基础,所以只有认同无穷数,才能更进一步认识超穷数。在这个问题上何来反康托之说?另外APB比你更男人,也比你有担当。你全面反对皮亚诺的无穷数理论和康托尔的超穷数理论,你敢承认帐吗?你有半点愧疚吗?!
回复 支持 反对

使用道具 举报

发表于 2025-7-19 06:10 | 显示全部楼层
elim 发表于 2025-7-18 22:01
不管啥主题, 二话不说直接开滚, 畜生不如.
回到主贴
由\(\forall n\in\mathbb{N}\,(n+1>n)\) 知自然数子 ...


        1、康托尔确实没改写自然数的定义,除你外也没有人定义自然数皆有限数。并且你①由\(\forall  n\in\mathbb{N}(n+1>n)\) 推不岀自然数集中的数皆为有限自然数。这是因为对\(\forall n\in\mathbb{N}\)都有\((n+1>n)\),但这并不能说明自然数n都是有限数,因为由皮亚诺分理第二条,当\(n\in\mathbb{N}\)时,\((n+1)\in\mathbb{N}\)。同理n+2,n+3,…,n+k,…都是自然数,从而不难得到\(\displaystyle\lim_{n \to \infty}n\)也是自然数。故此你由此定义的②式\(S=\{m\in\mathbb{N}:m非\mathbb{N}的上界\}\)不自洽。
        2、由于你在②式中\(m非\mathbb{N}的上界\)这个附加条件,也就使你①式中“任给”变成了“存在”。同时也使②式\(S=\{m\in\mathbb{N}:m非\mathbb{N}的上界\}\)中的每个自然数都是有限数。于是你从②式出发,利用皮亚诺公理笫5条,证得了S中的数都是有限数,这就是循环论证!!注意皮亚诺公理第5条要求对后继运算封闭!你的②式对后继运算并不封闭!故此你在循环论证的前提下并没有证到S=\(\mathbb{N}\)!所以你的结论和评注都是错的!!
        3、因为\(n_e\)是预先给定的无论怎样大的自然数,所以它的后继\(n_e+1\)以\(n_e+2\),…\(n_e+k\),…都是自然数(依据皮亚诺公理笫2条),由于这些后继数都大于\(n_e\),所以它都是旡穷数。从皮亚诺自然数系看,最小无穷自然数\(n_e+1\)的直前就是这个预先给定的无论怎样大的自然数\(n_e\),因此我们说自然数\(v=\displaystyle\lim_{n \to \infty}n\)的前趋是无穷数与\(n_e+1\)的前趋是有限数\(n_e\)并不矛盾。毕竟\(v=\displaystyle\lim_{n \to \infty}n\)是\(\mathbb{N}\)的上界嘛!
        4、\(v\in\mathbb{N},(v+1)也\in\mathbb{N}\)这是皮亚诺公理第二条的符号陈述。至于\(v+1\)超越无穷,不反不与什么发生矛盾,反而说明皮亚诺公理和康托尔实正整数第一生成法则高度一致,正因为如此学界也有学者称其为超穷自然数!
        5、皮亚诺公理5条(即概括原则则)要求对后继运算封闭(即与该公理笫二条兼容),由于你的\(S=\{ m\in\mathbb{N}:m非上界\}\)对后继运算不封闭,所以你概括出耒的\(S\ne\mathbb{N}\).
        elim先生,数学中没有戈陪尔效应,谎言千遍,仍是谎言。对错误的坚持,不仅不会取得胜利,反而更加暴露坚持者的愚蠢!
回复 支持 反对

使用道具 举报

发表于 2025-7-19 06:45 | 显示全部楼层
elim 发表于 2025-7-19 06:43
不管啥主题, 二话不说直接开滚, 畜生不如.
回到主贴
由\(\forall n\in\mathbb{N}\,(n+1>n)\) 知自然数子 ...


参见本回复的第五条评述
1、定理\(\displaystyle\lim_{n \to \infty}n=sup\mathbb{N}\)倒是一个真命题。该命题恰妈证明了\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!证明的第五行说【\(v=\displaystyle\lim_{n \to \infty}n\)是\(\mathbb{N}\)的最小上界\(Sup\mathbb{N}\)。】既有最小上界,那当然就有较大上界。所以\(v+1>v\)也是自然数也就没有什么违合之处!
2、\(V=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)是伪命题。因为我们可以证明若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)。该命题证明中若【\(v=\displaystyle\lim_{n \to \infty}n\)是自然,则\(m=v+1\)巴是自然数】这是皮亚诺公理第二条的符号表示,且\(v+1\)大于最小上界,并没有大于较大上界。因而不能因此否定\(v=\displaystyle\lim_{n \to \infty}n\)是自然数。
3、冯\(\cdot\)诺依曼自然数生成法则中的“=”表示左边是右边的后继的意思,并且“=”要么同时为数,要么同时为集合。故\(\mathbb{N}\in\mathbb{N}\)皆为错误表达式。固此也证明不了\(v=\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)
回复 支持 反对

使用道具 举报

发表于 2025-7-19 06:47 | 显示全部楼层
elim 发表于 2025-7-19 06:46
不管啥主题, 二话不说直接开滚, 畜生不如.
回到主贴
由\(\forall n\in\mathbb{N}\,(n+1>n)\) 知自然数子 ...


回复参见该评述的第五条
【原文】滚驴指望啼猿声驴打滚获戈培尔效应,畜生不如
\(\color{red}{【评述】}\)elim不是数学人,倒像十足的街娃混混。elim辩论数学简直像泼妇骂街,一篇数学帖子,学术陈述不多,与学术无关的流氓语言几乎渗半。确实畜生不如。
【原文】1.因康托的超穷数理论并没有改写自然数定义及皮亚诺公理,滚驴的有关援引歪曲直接泡汤.
\(\color{red}{【评述】}\)康托尔《超穷数理论基础》P75页给出实正整第一生成法则\(\overline{\overline{E_\nu}}\)=\(\overline{\overline{E_{\nu-1}}}+1\),有兴趣的读者不难发现康托尔的这个生成法则与皮亚诺公理第二条\(\forall n\in\mathbb{N},则(n+1)\in\mathbb{N}\)完全一致。确实康托尔没有改写【没有改写自然数定义及皮亚诺公理】,但康托尔有穷基数的无穷序列1,2,…,\(\nu\)\((=\displaystyle\lim_{n \to \infty}n)\),…确实是对elim的【自然数皆有限数】的直接否定。elim混球,你用\(\forall n\in\mathbb{N}\)\((n+1>n)\)定义自然数皆有限数洽吗?当\(\forall n\in\mathbb{N}\)时,根据皮亚诺公理第二条n+1,n+2,…,n+k,…\(\displaystyle\lim_{n \to \infty}n\)都是自然数。试问elim你的【自然数皆有限数的限在哪里?
【原文】2 称归纳证法为循环论证, 是反皮亚诺的炒作.
\(\color{red}{【评述】}\)你在认定\(S=\{m|m为非\mathbb{N}的上界\}\)的基础上,运用皮亚诺公理第五条(即归纳原则)归纳出S中的自然数皆有限数,这本生就是循环论证。你得出的\(S=\mathbb{N}\)就是荒唐透顶!
【原文】3\(\displaystyle\lim_{n \to \infty}\{1,2,…,\displaystyle\lim_{n \to \infty}n\}\)是顽瞎目测, 无Peano 公理依据, 骤变属哲学与数学证明不搭.
\(\color{red}{【评述】}\)你把用单调集列极限集的定义称目测法,把由你凭什么说由2是1的后继,3是2 的后继,…,k+1是k后继,…\(\displaystyle\lim_{n \to \infty}n\)是\(\displaystyle\lim_{n \to \infty}n-1\)的后继……这种不完全归纳法说成【无Peano 公理依据】。其实,这种不完全归纳的依据本身就是Peano 公理第二条\(a\)是自然数\(a\)后继\(a’=a+1\)也是自然数。你还要个什么Peano 公理依据?不管【无穷交就是一种骤变】属于什么范畴,单调递减集列的极限集等于空集就是一种货真价实的“臭便”!
【原文】4滚驴称\(n_e\)是有限自然数, 称其后继\(n_e+1\)为无穷大自然数. 难道滚驴是活活吃狗屎吃傻的?
\(\color{red}{【评述】}\)由于\(n_e\)是预先给定的无论怎样大的自然数,所以【称\(n_e\)是有限自然数, 称其后继\(n_e+1\)为无穷大自然数】这是符合无穷大自然数的定义的。elim不学无术,关于无穷大定义我在帖子中明确给出自何处,你为什么就不去看这些引用是否完整,是否正确。你他娘的才是【滚驴是活活吃狗屎吃傻】了。
【原文】5若\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\),则\(m=v+1\),且\(m>v\)这与\(\displaystyle\lim_{n \to \infty}n\)为\(\mathbb{N}\)上界矛盾。滚驴已决然入魔。
\(\color{red}{【评述】}\)若\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\),则\(m=v+1\in\mathbb{N}\)Peano 公理的符号表述,它不仅不【与\(\displaystyle\lim_{n \to \infty}n\)为\(\mathbb{N}\)上界矛盾】,反而说明Peano 公理与康托尔实正整数第一生成法则一致。
【原文】6据集论概括原则\(S=\{m|m为有限数自然数\}\)自洽, 满全部皮亚诺公理. 据皮亚诺公理第五条得\(S=\mathbb{N}\)故自然数皆有限数且\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)可见自然数皆有限数是皮亚诺公理的简单推论.
\(\color{red}{【评述】}\)由你的\(S=\{m|m为有限数自然数\}\)归纳不出 \(S=\mathbb{N}\),因为若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
【原文】7据 6 无穷\(\lim n=lim(n-k)\)\((\forall k∈N)\)没有自然数前趋, 歪说因为\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\implies\)\(\mathbb{N}=\phi\)泡汤。
\(\color{red}{【评述】}\)【\(lim n=lim(n-k)(\forall k∈N)\)没有自然数前趋】这只是elim的臆想,事实上\(\displaystyle\lim_{n \to \infty}(n-1)\)就是\(\displaystyle\lim_{n \to \infty}n\)的直接前趋。按elim的说法自然数是从某一有限数α直接跳跃到上界\(\displaystyle\lim_{n \to \infty}n\)的。那么这个有限数α就是\(\displaystyle\lim_{n \to \infty}n\)的直接前趋。所以泡汤的不是命题若\(\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N},则\mathbb{N}=\phi\),而是\(\displaystyle\lim_{n \to \infty}n\)没有直接,所以\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)
【原文】试问有谁怀疑滚驴蠢疯与傻蛋APB协力反康托?
\(\color{red}{【评述】}\)春风晚霞与APB先生都认同皮亚诺的无穷数理论,皮亚诺的无穷数是康托尔超穷数的基础,所以只有认同无穷数,才能更进一步认识超穷数。在这个问题上何来反康托之说?另外APB比你更男人,更有担当。你全面反对康托尔的超穷数理论和皮亚诺的无穷数理论你敢承认帐吗?
回复 支持 反对

使用道具 举报

发表于 2025-7-19 07:33 | 显示全部楼层
elim 发表于 2025-7-14 09:10
滚驴看不懂下定理及其证明:
【定理】\(v=\displaystyle\lim_{n\to\infty}n\) 没有前趋.
【证明】任取 ...


     ①、什么是无穷大:
【定义】:若整序变量\(x_n\),由某项开始,其绝对值变成且保持着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|\(x_n\)|>\(N_E\),则称变量\(x_n\)为无穷记为\(\infty\)(参见菲赫全哥尔茨《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义)
     ②、\(\mathbb{ N }\)中\(v=\displaystyle\lim_{n \to \infty}n\)是客观存在的
根据\(\infty\)定义,对任间预先给定的无论怎样大的自然数\(n_e\in\mathbb{N}\),则自然数集\(\mathbb{ N }=\)\(\{n\le n_e\}\)\(\cup\{n>n_e\}\)\((n\in\mathbb{N}\),其中集合\(\{n\le n_e\}\)中每个自然数都是有限自然数,\(\{n>n_e\}\)每个自然数都是无穷自然数。
根据皮亚诺公理第二条:“每个自然数a都有一个唯一确定的后继数a'(或a+1),且a'也是自然数”,所以\(\{n>n_e\}\ne\phi\),事实上因为\(\{n>n_e\}=\{n_e+1, n_e+2, n_e+3,…,n_e+k,…\}\),所以\(\displaystyle\lim_{n \to \infty}\{n>n_e\}=\)\(\{n_e+1, n_e+2, n_e+3,…,n_e+k,…\)\(\displaystyle\lim_{n \to \infty} (n_e+n) \}\),所以\(\displaystyle\lim_{n \to \infty} (n_e+n) \in\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty} n\in\mathbb{N}\).
回复 支持 反对

使用道具 举报

发表于 2025-7-19 07:53 | 显示全部楼层
elim始终认为他子孙中没有人是你老祖宗的儿子,所以他老祖宗就没有儿子!哈,哈,哈!
回复 支持 反对

使用道具 举报

发表于 2025-7-19 11:30 | 显示全部楼层
elim偏要坚持他子孙中没有人是祖宗,所以elim没有祖宗!哈,哈,哈!
回复 支持 反对

使用道具 举报

发表于 2025-7-19 13:15 | 显示全部楼层
elim偏要坚持他子孙中没有人是他的祖宗,所以elim认为没有祖宗!哈,哈,哈!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-9-3 11:34 , Processed in 0.104925 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表