数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge\color{red}{^\star\textbf{ 白痴打鸣 }\huge\infty\ne\lim n\to\infty}\)

[复制链接]
发表于 2025-11-6 11:05 | 显示全部楼层
elim 发表于 2025-11-6 11:04
无论滚驴咋扑腾, 它无法面对以下数学共识
令\(f(x)=1\,(x\ge 0)\)则对\(n\in\mathbb{N}\)有\(n=\displays ...


      elim,\(\infty=\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)\(( N_{\varepsilon}\in\mathbb{N})\),所以\(\displaystyle\lim_{n \to \infty}n\to\infty \)即指\(\displaystyle\lim_{n \to \infty}n\in\)\(\{n|n>N_{\varepsilon}\)\((=\)\([\tfrac{1}{\varepsilon}]+1\}\)之意.由于\(\{n|n>N_{\varepsilon}\)\((=[\tfrac{1}{\varepsilon}]\)\(+1\}\)\(\subset\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\);来源于威尔斯特拉数列极限的\(\varepsilon—N\)定义: 对\(\forallε>0, \exists正整数N\),当\(n>N\)时,有\(|x_n-a|<\varepsilon\)\(\iff\)\(\displaystyle\lim_{n \to \infty}x_n\)\(=a\)(这个威氏极限定义的符号表示参见同济大学《高等数学》第七版 上册P21页第25行);来源于无穷大量与无穷小量的相互关系;来源于菲赫金哥尔茨关于\(\infty\)的定义;来源于恩格斯关于无穷大量与无穷小的辩证关系(参见恩格斯《自然辩证法》2018年中文版P187页),春风晚霞也想问问你他妈的\(\infty=Sup\mathbb{N}\)来源何处?春风晚霞也想问问究竟是他妈的哪个王八蛋在反现行数学?!
回复 支持 反对

使用道具 举报

发表于 2025-11-6 11:07 | 显示全部楼层
elim 发表于 2025-11-6 11:06
无论滚驴咋扑腾, 它无法面对以下数学共识
令\(f(x)=1\,(x\ge 0)\)则对\(n\in\mathbb{N}\)有\(n=\displays ...


        【定理】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-11-6 11:08 | 显示全部楼层
elim 发表于 2025-11-6 11:08
无论滚驴咋扑腾, 它无法面对以下数学共识
令\(f(x)=1\,(x\ge 0)\)则对\(n\in\mathbb{N}\)有\(n=\displays ...


定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-11-6 11:22 | 显示全部楼层
elim 发表于 2025-11-6 11:12
无论滚驴咋扑腾, 它无法面对以下数学共识
令\(f(x)=1\,(x\ge 0)\)则对\(n\in\mathbb{N}\)有\(n=\displays ...


定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-11-11 05:52 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-11 21:02 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-12 20:57 | 显示全部楼层

        elim根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。你根本就不知道纯粹数学的对与错!像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是单调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-11-13 06:10 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-14 03:06 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-15 04:28 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-12-23 10:23 , Processed in 0.175756 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表