数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: trx

【重点讨论】敬请本网高手都来参入!!!

[复制链接]
 楼主| 发表于 2010-10-26 15:11 | 显示全部楼层

【重点讨论】敬请本网高手都来参入!!!

下面引用由ysr2010/10/26 11:19am 发表的内容:
若A除以2n+1余数为0则A减去2n+1的倍数就能被2n+1整除,而A-a(2n+1)必与a(2n+1)相对,这是命题成立的原因,这种排列和证明方法我是第一次听你说的
谁那样说的就去问谁!!!
发表于 2010-10-26 16:13 | 显示全部楼层

【重点讨论】敬请本网高手都来参入!!!

http://www.mathchina.com/cgi-bin/attachment.cgi?forum=12&topic=1724&postno=1&name=Clipboard0139_1283319148&type=.gif
请看您的推论2是如何说的?
 楼主| 发表于 2010-10-26 16:55 | 显示全部楼层

【重点讨论】敬请本网高手都来参入!!!

下面引用由ysr2010/10/26 04:13pm 发表的内容:
(www.mathchina.com/cgi-bin/attachment.cgi?forum=12&topic=1724&postno=1&name=Clipboard0139_1283319148&type=.gif)
请看您的推论2是如何说的?
应把定理1及偶数A表示式理解清楚!!!
下为俩奇数数列反向相对(推论2中的质因数p为3时一例):
3,5,7,9,11,13,15,17,19,21,23,25,27。
27,25,23,21,19,17,15,13,11,9,7,5,3.。
看推论2是否如此!!!
发表于 2010-10-26 20:20 | 显示全部楼层

【重点讨论】敬请本网高手都来参入!!!


   证明?
   还是验证?!
发表于 2010-10-26 20:55 | 显示全部楼层

【重点讨论】敬请本网高手都来参入!!!


   你的素合定理得到证明了吗?
   用猜想得到的证明还是猜想!
   如果黎曼猜想得到了证明,那么数论中的问题几乎就都可以得到证明了!
发表于 2010-10-26 20:57 | 显示全部楼层

【重点讨论】敬请本网高手都来参入!!!

发表于 2010-10-26 22:25 | 显示全部楼层

【重点讨论】敬请本网高手都来参入!!!

下面引用由liudan2010/10/26 09:26pm 发表的内容:
> “你的素合定理得到证明了吗?”
是能够证明的。
  
> “如果黎曼猜想得到了证明,那么数论中的问题几乎就都可以得到证明了!”
...
   黎曼猜想如果得到证明,那么正确的素数定理就产生了!
   但是由于他用的是复变函数的理论,结果走错了路,因此永远得不到证明!!
   有了正确的素数定理当然数论中的问题几乎就可以得到证明![br][br]-=-=-=-=- 以下内容由 申一言 时添加 -=-=-=-=-
杰波夫猜想俺早已给出证明了!
 楼主| 发表于 2010-10-27 09:15 | 显示全部楼层

【重点讨论】敬请本网高手都来参入!!!

下面引用由liudan2010/10/26 07:59pm 发表的内容:
对偶数 A 的合数对,素数对的初等论证。
素合定理是一个恒等的函数,不是近似的计算,能够反映偶数 A 素数对最多的道理。
liudan,看到你帖所述,使本人大失所望,怎么你也是如此的水平啊???
申一言对你帖所述的质疑是对的!!!
发表于 2010-10-27 22:52 | 显示全部楼层

【重点讨论】敬请本网高手都来参入!!!

杰波夫猜想 相邻平方数之间至少存在两个素数。
即在区间[n^2,(n+1)^2]至少有两个素数.
    证
      设该区间的素数差是dn
    则有
   (1) dn≥π[(n+1)^2]-π(n^2)=2.
    由于 n=1,n=i,n=i+1的证明太简单了,就留给网友们去证,俺证 n→∞.
    因为中华单位定理是;
             Mn+12(√Mn-1)
   (2) π(Mn)=------------
                Am
   由中华单位个数定理的值域以及定义域知:
                       __
    当Mn→∞时,   Am=√Mn-1
                        ___
因此             An^2=√n^2-1=n-1,
                            _______
                 A(n+1)^2=√(n+1)^2-1=n+1-1=n
   limdn=lim{π[(n+1)^2-π(n^2}
  n→∞  n→∞             ______                 ___
              (n+1)^2+12(√(n+1)^2-1)    n^2+12(√n^2-1)
        =lim{------------------------ - ----------------}
        n→∞         n                    n-1
             n^2+2n+1+12n      n^2+12n-12
       =lim{------------- -  -------------}
       n→∞     n                n-1
          n^2+14n+1        n^2+12n-12      
      =lim----------- -lim-----------  分子分母同时除以n
       n→∞  n       n→∞   n-1
          n+14+0         n+12-0
     =lim-------- - lim--------
      n→∞  1     n→∞  1-0
    =n+14-n-12
    =2.
    因为 n=1时,n=i时,n=i+1时以及 当n→∞时 dn=2.
  
    猜想得证.
     注: 此题在世界上仍然没有得到证明!
         而应用中华单位个数定理则被轻松的证明了!
          当n→∞时所求值竟然神奇般的与猜想的值吻合!简直不可思议!?
              欢迎批评指正!
                                                       谢谢!
 楼主| 发表于 2010-10-28 08:20 | 显示全部楼层

【重点讨论】敬请本网高手都来参入!!!

申一言 ,没有一个人能知道你究竟在胡说什么!远远离开!!!
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-18 18:44 , Processed in 0.080790 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表