数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: moranhuishou

你相信吗?形如n^2-n+p_r的连续素数的个数趋于无穷

[复制链接]
 楼主| 发表于 2011-4-19 08:45 | 显示全部楼层

你相信吗?形如n^2-n+p_r的连续素数的个数趋于无穷

下面引用由尚九天2011/04/19 03:32am 发表的内容:
    “推理”并不总是正确的。根据推理,世界应该是那样,结果变成了这样。“推理”,总有一大堆理,究竟从那一堆“理”才能走向“真理”,是很难确定的。
数理逻辑是很严谨的,是完全可以确定的,对就是对,错就是错,不会模棱两可的,除非你证明本身有错。
这一点应该相信。
发表于 2011-4-19 09:09 | 显示全部楼层

你相信吗?形如n^2-n+p_r的连续素数的个数趋于无穷

下面引用由moranhuishou2011/04/19 08:45am 发表的内容:
数理逻辑是很严谨的,是完全可以确定的,对就是对,错就是错,不会模棱两可的,除非你证明本身有错。
这一点应该相信。
怎么能够证明陶的“证明本身”没错呢?
 楼主| 发表于 2011-4-19 09:59 | 显示全部楼层

你相信吗?形如n^2-n+p_r的连续素数的个数趋于无穷

下面引用由尚九天2011/04/19 09:09am 发表的内容:
怎么能够证明陶的“证明本身”没错呢?
这很简单,把他的证明审查出错误就是有错,反之就没错。
 楼主| 发表于 2011-4-19 10:18 | 显示全部楼层

你相信吗?形如n^2-n+p_r的连续素数的个数趋于无穷

在前面25楼给出了一个最小的“七星连珠”素数列,下面再给出一个最小的“八仙过海”的:
21557,21559,21563,21569,21577,21587,21599,21613。
发表于 2011-4-19 11:17 | 显示全部楼层

你相信吗?形如n^2-n+p_r的连续素数的个数趋于无穷

谢谢!!
发表于 2011-4-19 12:16 | 显示全部楼层

你相信吗?形如n^2-n+p_r的连续素数的个数趋于无穷

脑筋急转弯~~~~
当P_r=41+[n/41]*60时,就能连续得到45个了......
后边5个是:1741,1823,1907,1993,2081.
第6个为2171不是素数,我们再令:
P_r=41+[n/41]*60-[n/46]*60
就能连续得到49个了......
后边4个是:2111,2143,2237,2333.
如此以往,何患无穷?
 楼主| 发表于 2011-4-19 12:47 | 显示全部楼层

你相信吗?形如n^2-n+p_r的连续素数的个数趋于无穷

下面引用由0-11102011/04/19 00:16pm 发表的内容:
脑筋急转弯~~~~
当P_r=41+*60时,就能连续得到45个了......
后边5个是:1741,1823,1907,1993,2081.
第6个为2171不是素数,我们再令:
...
没看明白什么意思。
发表于 2011-4-19 13:05 | 显示全部楼层

你相信吗?形如n^2-n+p_r的连续素数的个数趋于无穷

下面引用由moranhuishou2011/04/19 00:47pm 发表的内容:
没看明白什么意思。
Q(n)=n^2-n+41+([n/41]-[n/46])*60,  [x]表示不大于x的最大整数.
当n=1,2,3,...,49时,Q(n)均为素数.
 楼主| 发表于 2011-4-19 13:08 | 显示全部楼层

你相信吗?形如n^2-n+p_r的连续素数的个数趋于无穷

大概一些朋友 还没有看出这个素数列的规律,举例介绍如下:
21557
21559=21557+2
21563=21559+4
21569=21563+6
21577=21569+8
21587=21577+10
21599=21587+12
21613=21599+14
发表于 2011-4-19 13:45 | 显示全部楼层

你相信吗?形如n^2-n+p_r的连续素数的个数趋于无穷

没注意,好规律,八仙过海嘛!
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-7 11:33 , Processed in 0.090127 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表