数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 雷明85639720

无割边的3—正则平面图是可3—边着色的,四色猜测正确!(完善稿)

[复制链接]
发表于 2017-7-12 15:47 | 显示全部楼层
1、我已经完成自己的 四色定理证明,结题。没有必要再学习另外的四色 定理证明方法。有这个精力不如再研究解决另一个数学难题。
2、说来说去,你还是要我按照你的 理论(或方法)来解释,这点我做不 到,因为我并不看好你的 方法,再说你的理论太复杂了,难懂。
3、我的 方法目前还属于机密性质,不便透露。但论文已经讲了大概。聪明人能看懂。
4、仅针对你说我不是研究四色 定理的话来“发图”的。当然,你说是“瞎猫碰着了死老鼠呢。”也罢,这“瞎猫”也 够聪明的了。
 楼主| 发表于 2017-7-12 16:11 | 显示全部楼层
增勇朋友:
知已知彼,方能能非战百胜。这占常识你也不明白,太愚蠢了。你若在保秘,那我也就没有办法和你讨论了。但我还要给你说,所写出来的文字,一定要让别人能看董,看明白。你说你“没有必要再学习另外的四色定理证明方法。”你就只相信自已的对吗,你怎么不发表出来呢,有那一个数学大师认可了你对四色猜测的证明方法是对的呢。现在大家不是都在进行着研究吗。即是这样,我以后再发表的文章,也请你不要在后面进行评论了。但我对你的文章,感到有看不明白的地方,勤劳者是有错误的地方,我还是会毫不保留的会提出来的。你对赫渥特图的着色就是一例,我要你在赫渥特原着色的基础上进行着色,你却在我对赫渥特图着了一半的图上进行着色,这不是一个错误吗。
发表于 2017-7-12 16:35 | 显示全部楼层
雷明朋友:
1、我用我的 方法给赫渥特图着色,你说不是这样的。要在赫渥特图基础上着色才算数。
2、我在赫渥特图基础上着色(原图绝大部分的 顶点颜色不变),仅把几个错误着色的顶点颜色调整好,完成了正常4-着色。你在39楼回复的贴中说

“增勇朋友:
1、你若早用图形加文字来这样说明,我不就一看就明白了吗,难道这个事还要别人多次的提出呢。
2、我们两个最终的着色结果是相同的,可能你按你的方法还可以在赫渥特原着色的基础上得出多个不同的着色模式。
3、我们都各自用自已的方法说明了赫渥特图不光是可4—着色的,也说明了在赫渥特原着色基础上也是可4—着色的。这正说明了赫渥特所有意设制的那种构形也是可约的。”

可是现在42楼又说“我要你在赫渥特原着色的基础上进行着色,你却在我对赫渥特图着了一半的图上进行着色,这不是一个错误吗。”

请问你脑子现在清醒吗?回去睡一觉,或者以后待你脑子恢复清醒状态再聊。
 楼主| 发表于 2017-7-12 16:55 | 显示全部楼层
增勇朋友:
1、你只看到了39楼的说法,却在立即在40楼又进行了补充,与在42楼的说法是一模一样的。你的这次回复只用对你有利的话,而不用对你不利的话,你是有意的呢,还是真的没有看到呢。我看你是想否定别人想昏了吧。你好好的上去40楼上再看看。
2、你不是说过了你能看懂我的那篇关于“3—正则平面图是可3—边着色的”证明文章了吗,怎么现在又说看不懂了呢。不要因为你“并不看好”我“的方法,再说你的理论太复杂了,难懂。” 就说看不懂了嘛,你提出了那些具体的问题了呢。
3、当然了,看了别人的文章,提不提也是你自已的事,但不要说看不懂。现在网络很方便,你只要提出来了,我一定是会回复的。你只提出了一个边着色与面着色是两回事的问题,我不是一一都给你解释清楚了吗。
4、如果你再连我回复的这点小问题也不明白,我还要说,你根本就不懂四色问题,你的研究也是盲目的。你还硬要说你不想去研究别人对四色猜测的证明,就只知道你的研究是正确的。真是太的有点不好再说你了。
5、到此吧,再没有与你计论的必要了,因为你只看到你,根本就看不到别人。
发表于 2017-7-12 18:23 | 显示全部楼层
1、我所说的“看懂你的文章”仅是一个大概的了解(知道你在说什么),并不是认可你的论点。
2、另外,还包括知道你在哪里说错了,所以发帖和你交流。
这就是我所说的“看懂你的文章”的 意思。
我早说过:我们的 认知(理论基础)相差太大,没法交流, 就各自保留意见看法吧。但你非得要我说个明白。否则,我就不是研究四色 定理的,“瞎猫碰上死老鼠”。
这下明白(添麻烦)了吧。我还是那句话,意见不统一,就各自保留意见看法吧。
发表于 2017-7-12 18:24 | 显示全部楼层
本帖最后由 zengyong 于 2017-7-12 10:27 编辑

发重复了,删去。
拜拜!
 楼主| 发表于 2017-7-12 20:09 | 显示全部楼层
增勇朋友:
我对你今天在我的《再回复广西的增勇朋友》一文后的评论的回复如下:
1、我的原话是“由于无割边的3—正则平面图的顶点数一定是偶数并图中的奇数边面的总个数也一定是偶数,这就保证了无割边的3—正则平面图一定可以划分成一个或若干个偶圈。”我并没有说“3-正则平面图中的圈都是偶圈”。你自已对圈的定义不明白,所以你就不能理解这个问题。图中的一个面可以是一个圈,但若干个面所构成的一个大集合也可以看作一个圈。否则,你怎么理解哈密顿圈呢。哈密顿圈不就是经过了图中所有顶点的一个大圈吗。是你不懂图论呢,还是我纸上谈兵呢。
2、你的第4点,引用了我的话,说明了你还是不明白圈的含义。我的这一段话,实际上就是对我上面第1点的更进一步的解释,你明白吗。不过这段话里的最后一句“你边这一点也不明白,你还研究什么四色问题呢。”中有一个字是打错了,把“连”字打成了“边”字,这是因为我用的五笔,连字应是LPK,而我敲K时轻了一点,就成了LP,这就成了边字。
3、你看一看我的文章中有没有提及奇圈二字。请你再看一看。我专门还说了两个相奇数边面合起来就是一个偶圈;若这两个奇数边面不相邻,中间一定是通过若干个偶数边面传替而成为一个大偶圈的。这你不是没有看到吧。
4、我文中就怕你这样的低能人只把单个面认为是圈,而专门提出了奇数边面和大偶圈的概念,大概你有弱视,没有看到吧。
5、你就这样的水平,还让网友们去评判,人家不把你笑话死呢,你不嫌丢人。
 楼主| 发表于 2017-7-12 22:17 | 显示全部楼层
本帖最后由 雷明85639720 于 2017-7-12 15:08 编辑

增勇朋友:
1、我不用奇圈,我为什么要说奇圈呢。不是画蛇添足吗。
2、我写的文章我能看不懂吗,这是你写的吗,还要你加红色标志吗,低能人。
3、我不用奇圈为什么要说它呢,是你写文章还是我写文章。
4、你能指出我那里没有用奇圈二字,文章就不通吗,你能说说我的文章那些地方一定得非要用奇圈二字吗。
5、你说,“老先生还把哈密顿圈扯入四色定理,你真‘懂图论’!真能‘说’!” 说你不懂四色猜测,你还还相信。正是在1880年,泰国特根据另一个错误的猜想——每一个平面三次图都有哈密顿圈——给出四色猜测的另一个证明。可是在六十多年以后的1946年,著名图论大师塔特构造成出了一个没有哈密顿圈的平面三次图的反例,人们才知道泰特的证明又错了。塔特图(D46T或D(g25T))与现在已知顶点数最少的、没有哈密顿圈的平面三次图(D38b或D(g21b)),在各有关文献资料上都有,你可以去查一查,看一看。看来你对四色问题的历史并不了解。你还得好好的学习一下的。
6、你太的低能了,没有什么与你可说的了,白浪费我的时间。
再见。
发表于 2017-7-12 22:28 | 显示全部楼层
呵呵!谁丢人还不知道呢。
再见。
 楼主| 发表于 2017-7-12 22:53 | 显示全部楼层
你真是个图论盲。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-1 17:42 , Processed in 0.091548 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表