求\(x^5+y^{12}=z^{13} 的正整数解,基本也就这两种解法。\)
1,\(\frac{\big((v^{13 a} - u^{12 b})^{281} k^{156 n}\big)^{5} +\big (u^{ b} (v^{13 a} - u^{12 b})^{117} k^{65 n}\big)^{12}}{\big(v^{a} (v^{13 a} - u^{12 b})^{108} k^{60 n}\big)^{13}}=1\)
v=2, 3, 4, 5, 6, 7, 8, 9, ......
u=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ......
a=1, 2, 3, 4, 5, 6, 7, 8, 9, ......
b=1, 2, 3, 4, 5, 6, 7, 8, 9, ......
n=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ......
k=1, 2, 3, 4, 5, 6, 7, 8, 9, ......
2,\(\frac{\big(v^a (v^{5 a} + u^{12 b})^{96} k^{156 n}\big)^{5} +\big (u^ {b} (v^{5 a} + u^{12 b})^{40} k^{65 n}\big)^{12}}{\big((v^{5 a} + u^{12 b})^{37} k^{60 n}\big)^{13}}=1\)
v=1, 2, 3, 4, 5, 6, 7, 8, 9, ......
u=1, 2, 3, 4, 5, 6, 7, 8, 9, ......
a=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ......
b=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ......
n=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ......
k=1, 2, 3, 4, 5, 6, 7, 8, 9, ...... |