|

楼主 |
发表于 2021-8-18 15:31
|
显示全部楼层
以逻辑推导得到的偶数哥德巴赫分拆数下限数学表达式:G2(X)>0.5X/(lnX)^2,(式中,X为≥10偶数),给出了偶数哥德巴赫分拆数严格大于0的下限数学式,以最简单的数学式证明了哥德巴赫猜想成立。
这个数学表达式类同陈氏定理的数学表达式。但是,偶数哥德巴赫分拆数下限数学表达式:G2(X)>0.5X/(lnX)^2,---(1)(式中,X为≥10偶数),是哥德巴赫猜想“1+1”的数学表达式,和陈氏定理的数学表达式P,(1,2)≥0.67xCx/(logx)^2,---(2),即“1+2”含义完全不同,这明显可见,不用解释。
既然是数学表达式,当然能够计算和验证,我在前文中给出过99个1000000附近偶数的哥德巴赫分拆数。实践证明,二个数学表达式都正确,但是G2(X)>0.5X/(lnX)^2---(1)的计算结果,优于陈氏定理P,(1,2)≥0.67xCx/(logx)^2---(2),的计算结果(经过计算分析对比)。说明陈氏定理推导过程趋于保守(推导过程有近似估计成分)。
用WHS筛法可以再现每个偶数的哥德巴赫猜想构成,即人们已经认识到偶数都有确定的哥德巴赫分拆数。但是哥德巴赫猜想成立的证明涉及到无穷大,因此,没有数学式能给出答案的确定性,即数学—确定性丧失。我们可以找到一个数学方法WHS筛法,用哥德巴赫猜想的定义来证明﹑验证确定偶数的哥德巴赫猜想成立。
我在上文提到:这样我们只用RSA-640的97位921个素数,就能证明验证比PN921大[1,10^23-N]区间的任何偶数哥德巴赫猜想成立,这里N=200000。这已经是比PN921最大素数大近1000万亿亿的偶数了。
如果中科院,数学研究部门用疑问,我可以用实践证明所言不虚。你们可以在网上给出比Pn921大m的偶数A,和[m,m+200000]区间的全部素数(如m=10^23,素数约3800个),我用WHS筛法中的序数和法,给出Pn921大的偶数A(含与A相邻的,共3个偶数)的哥猜解。 |
|