|
例举实际的偶数下界计算值的计算实例;
G(20180205000) = 69871489; k(m)= 2.70109 ,
inf( 20180205000 )≈ 69825220.3 , Δ≈-0.000662,infS( 20180205000 )= 25850765.45 ,
G(20180205002) = 28458705; k(m)= 1.10026 ,
inf( 20180205002 )≈ 28442686.3 , Δ≈-0.000563,infS( 20180205002 )= 25850765.45 ,
G(20180205004) = 26074953; k(m)= 1.008 ,
inf( 20180205004 )≈ 26057571.6 , Δ≈-0.000667,infS( 20180205004 )= 25850765.45 ,
G(20180205006) = 56439236; k(m)= 2.18182,
inf( 20180205006 )≈ 56401670.1 , Δ≈-0.000666,infS( 20180205006 )= 25850765.45 ,
G(20180205008) = 26456329; k(m)= 1.02286 ,
inf( 20180205008 )≈ 26441791.9 , Δ≈-0.000549,infS( 20180205008 )= 25850765.46 ,
G(20180205010) = 41806042; k(m)= 1.61616,
inf( 20180205010 )≈ 41779014.9 , Δ≈-0.000646,infS( 20180205010 )= 25850765.46 ,
G(20180205012) = 57496071;k(m)= 2.22268 ,
inf( 20180205012 )≈ 57458001.4 , Δ≈-0.000662,infS( 20180205012 )= 25850765.46 ,
G(20180205014) = 27211679; k(m)= 1.05223 ,
inf( 20180205014 )≈ 27201057.2 , Δ≈-0.000390,infS( 20180205014 )= 25850765.46 ,
G(20180205016) = 25873528;k(m)= 1.00042
inf( 20180205016 )≈ 25861496.4 , Δ≈-0.000465,infS( 20180205016 )= 25850765.47 ,
G(20180205018) = 51887088; k(m)= 2.00597
inf( 20180205018 )≈ 51855863.9 , Δ≈-0.000602,infS( 20180205018 )= 25850765.47 ,
G(20180205020) = 34482911; k(m)= 1.33333 ,
inf( 20180205020 )≈ 34467687.3 , Δ≈-0.000441,infS( 20180205020 )= 25850765.47 ,
G(20180205022) = 25872548;k(m)= 1.00033,
inf( 20180205022 )≈ 25859391.0 , Δ≈-0.000509,infS( 20180205022 )= 25850765.47 ,
G(20180205024) = 62082983;k(m)= 2.4 ,
inf( 20180205024 )≈ 62041837.2 , Δ≈-0.000663,infS( 20180205024 )= 25850765.48 ,
G(20180205026) = 27549787;k(m)= 1.06496,
inf( 20180205026 )≈ 27530061.7 , Δ≈-0.000716,infS( 20180205026 )= 25850765.48 ,
G(20180205028) = 27651650; k(m)= 1.06898,
inf( 20180205028 )≈ 27633963.6 , Δ≈-0.000640,infS( 20180205028 )= 25850765.48 ,
G(20180205030) = 70102705; k(m)= 2.70997,
inf( 20180205030 )≈ 70054670.9 , Δ≈-0.000685,infS( 20180205030 )= 25850765.48 ,
inf( 20180205032 )≈ 28365752.2 , Δ≈,infS( 20180205032 )= 25850765.49 , k(m)= 1.09729
inf( 20180205034 )≈ 28745835.0 , Δ≈,infS( 20180205034 )= 25850765.49 , k(m)= 1.11199
inf( 20180205036 )≈ 53484342.4 , Δ≈,infS( 20180205036 )= 25850765.49 , k(m)= 2.06897
inf( 20180205038 )≈ 31023032.6 , Δ≈,infS( 20180205038 )= 25850765.49 , k(m)= 1.20008
inf( 20180205040 )≈ 34967219.0 , Δ≈,infS( 20180205040 )= 25850765.5 , k(m)= 1.35266
可以看到,偶数素对下界计算值inf( M)是贴近素对真值的波动而 同步波动(相对误差值都很小且接近);
偶数素对的区域下界计算值infS( m) 则排除波动因素后呈现线性缓慢增大。 |
|