|
∏(1-\(1\over P\))=\(e^{-γ}\over{ln(x)}\)推出\({ln(x)}e^γ\)=∏\(P\over{P-1}\), 所以\(({P\over{P-1}})^n\)=\(({ln}(x)e^γ)^n\)=\({ln}^n(x)e^{nγ}\),而最密四生素数的系数为:\({P^3(P-4)}\over(P-1)^4\),当P≥5时,为此形式,对于素数2,\({2^3(2-1)}\over(2-1)^4\)=\({1\over 2}{2^4\over(2-1)^4}\),同样素数3,\({3^3(3-2)}\over(3-1)^4\)=\({1\over 3}{3^4\over(3-1)^4}\),当素数P≥5后,\({P^3(P-4)}\over(P-1)^4\)=\({P^4\over(P-1)^4}{{P-4}\over P}\)=\(({P\over{P-1}})^4{(1-{4\over P})}\),把素数2,3的放进去:\(1\over 6\)∏\(({P\over{P-1}})^4{(1-{4\over P_i})}\),\(P_i\)≥5. P≥2. |
|