数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Large\textbf{不管咋样扯, 蠢疯也还是个蠢东西}\)

[复制链接]
发表于 2024-6-26 15:28 | 显示全部楼层
elim 发表于 2024-6-26 13:26
其实蠢疯好不好, 种有多孬这些事, 我是不在乎的。所以一般根本不屑
他所啼的猿声。他想怎么自蛋自捣,想怎 ...


1、【勘误】原帖中〖当仅且当\((\displaystyle\bigcap_{m=1}^∞ A_m)^c)=\phi\)时〗属笔误。正确的应是〖当仅且当\(\displaystyle\bigcap_{m=1}^∞ A_m=\phi\)时〗,谢谢帮我勘误,原帖己改过来了。
2、\(N_∞\cap A_m^c=\phi\nRightarrow (N_∞\cup\A_m^c=\phi\)
因为\(N_∞\cap A_m^c=\phi\)的必要条件是\(N_∞\)与\(A_m^c\)无公共元素,并不排斥\(N_∞≠\phi\)如\(N_∞=\displaystyle\lim_{n→∞}\{n+1,n+2,……\}\)是否为空就不能由\( A_m\cap A_m^c=\phi\)推出。
3、因为当仅且当\(\displaystyle\bigcap_{m=1}^∞ A_m=\phi\),所以【\N_∞=N_∞\cap N\)\(=N_∞\cap\displaystyle\bigcup_{m=1}^∞ A_m^c\)有循环论证之嫌!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-27 01:12 | 显示全部楼层
勘误改过来。\(\displaystyle B=B\cap\mathbb{N}=B\cap\bigcup_{n=1}^\infty A_n^c \color{red}{\overset{?}{=}} B\cap\varnothing = \varnothing\) 就改不过来了。孬种咋改种?蠢疯顽瞎不是有没有孬种之嫌的问题,它就是孬种么,呵呵
回复 支持 反对

使用道具 举报

发表于 2024-6-27 15:55 | 显示全部楼层
elim 发表于 2024-6-27 05:31
令 \(A_m:=\{k\in\mathbb{N}: k> m\},\;\displaystyle N_{\infty}:=\bigcap_{n=1}^\infty A_n,\;E:=\bigcup ...

近半来elim在80多个主题下向春风晚霞发动了猛烈的进攻,近期所发帖文基本上都是宿帖,春风晚霞信守数学论辩〖讲理我陪,骂架我也陪〗这样平均每天都要处理(阅读或回复)至少100余篇帖文。为节约网络资源,为净化论坛环境,我殷切期待关注\(N_∞\)是否非空的网友到我的主题《欢迎文明赐教,拒绝青楼艳词》与我分享(教诲、批判均可)。从即日起对发表在那近100个主题下的宏论,一律回复〖为节约网络资源,您的回复己发在《欢迎文明赐教,拒绝青楼言词》主题下相关帖文之中供君参考!〗请擅长青楼技巧,毫无道德底线者自爱!一周后不再回复发表在其它主题下攻击我的文章,望攻击我者不要产的“春风晚霞已向我缴械投降”的错觉!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-27 22:43 | 显示全部楼层
令 \(A_m:=\{k\in\mathbb{N}: k> m\},\;\displaystyle N_{\infty}:=\bigcap_{n=1}^\infty A_n,\;E:=\bigcup_{n=1}^\infty A_n^c\),
则 \(E\subset\mathbb{N}\) 且 \(m\in A_m^c=\{k\in\mathbb{N}: k\le m\}\subset E\;(\forall m\in\mathbb{N}).\)
\(\therefore\;\;\color{red}{\displaystyle\bigcup_{n=1}^\infty A_n^c =\mathbb{N}}\).
\(N_{\infty}\cap A_n^c\subset A_n\cap A_n^c=\varnothing,\;\;\therefore\; 、\color{red}{N_{\infty}\cap A_n^c=\varnothing\,(\forall n\mathbb{N})}.\)
\(\because A\subset B\iff A=A\cap B,\;\;V\cap\bigcup_{k=1}^\infty U_k=\bigcup_{k=1}^\infty(V\cap U_k)\)
\(\therefore\;N_{\infty}=N_{\infty}\cap\mathbb{N}=N_{\infty}\cap\displaystyle\bigcup_{n=1}^\infty A_n^c=\bigcup_{n=1}^\infty(N_{\infty}\cap A_n^c)=\bigcup_{n=1}^\infty\varnothing=\varnothing \)

我们的教育方针,应该调动孬种丢人现眼的积极性,使受教育者在德育,
智育方面有充分的反面教员,让他们长记性。学会好好作人,好好做学问。
回复 支持 反对

使用道具 举报

发表于 2024-6-28 09:55 | 显示全部楼层
elim 发表于 2024-6-27 22:43
令 \(A_m:=\{k\in\mathbb{N}: k> m\},\;\displaystyle N_{\infty}:=\bigcap_{n=1}^\infty A_n,\;E:=\bigcup ...

〖为节约网络资源,您的回复己发在《欢迎文明赐教,拒绝青楼言词》主题下相关帖文之中供君参考!〗
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-28 10:25 | 显示全部楼层
\((0)\;\;\)对任意自然数\(m,\;\,m\in A_m^c.\;\color{grey}{(A_m^c:=\{n\in\mathbb{N}: n\le m\})}\)
\((1)\;\;\)对任意自然数\(m,\;\, A_m^c\subset\displaystyle\bigcup_{n=1}^\infty A_n^c\)
\(\qquad\)只有孬种不认(0) 和 (1).
\(\therefore\;\;\mathbb{N}\subset\displaystyle\bigcup_{n=1}^\infty A_n^c\) (因为(0),(1)说明任何自然数都是所论并集的成员)
但显然\(\mathbb{N}\supset\displaystyle\bigcup_{n=1}^\infty A_n^c\), 所以 \(\displaystyle\bigcup_{n=1}^\infty A_n^c=\mathbb{N}\),
只有孬种才否认这个只需\(A_n\)的定义和集论基本概念就证得的结果.

孬种的定义千头万绪, 但归根到底, 大半年弄不懂几十年前一夜
就该弄懂的基本概念, 还那么积极地丢人现眼之人, 非孬种莫属.
把蠢疯顽瞎的问题归咎为种孬, 是说孬种反数学已经尽力了, 但
很无辜,不成功,种太孬。
回复 支持 反对

使用道具 举报

发表于 2024-6-29 11:30 | 显示全部楼层
elim 发表于 2024-6-28 10:25
\((0)\;\;\)对任意自然数\(m,\;\,m\in A_m^c.\;\color{grey}{(A_m^c:=\{n\in\mathbb{N}: n\le m\})}\)
\(( ...


elim真不是男人,\(\displaystyle\bigcap_{m=1}^∞ A_m=\phi\)时,\(N=\displaystyle\bigcup_{m=1}^∞ A_m^c\)出自你的【证明:设\(\Omega=\mathbb{N}^+\),\(A_k=\{m\in\mathbb{N}^+:k<m\}\),\(A_k^c=\{m\in\mathbb{N}^+:m≤k\}\),
根据德摩根定理\(\displaystyle\bigcap_{k=1}^∞ A_k=\)\(\displaystyle\bigcup_{k=1}^∞\{1,2,3,…\})^c=\)\(\mathbb{N}^+)^c=\phi\)】嘛!
你这个证明“精华”之处不就是\(\displaystyle\bigcup_{k=1}^∞ A_k^c=\displaystyle\bigcap_{k=1}^∞ A_k)^c\color{red}{=\phi}\)吗?根据等量的传递性不就就是\(\displaystyle\bigcup_{k=1}^∞ A_k^c\color{red}{=\phi}\)吗?这个根本就不成立的等式正是你【无穷交就是一种骤变】结果!如果承认这个根本就不成立的等式,那你就得承认\(\color{red}{(\mathbb{N}^+)^c=\phi}\)这个荒唐的结果。那你就得承认\(B=B\cap N=B\cap\displaystyle\bigcup_{m=1} A_m^c=B\cap\phi\)这个事实。那你就得承认你成功地“证明”\(\forall B\subseteq N\)都有\(B=\phi\)!如果你不承认那个根本就不成立的等式,那你就得承认你用德摩根律证明\(N_∞=\phi\)是错误的!如果你都不承认,那只能说明你是孬种,是野种、是流氓、是无赖!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-29 11:40 | 显示全部楼层
蠢疯就是个孬种,什么叫 \(\displaystyle\bigcap_{k=1}A_k=\varnothing\) 时 \(\mathbb{N}=\displaystyle\bigcup_{k=1}^\infty A_k^c\)? 我拿 \(\displaystyle\bigcap_{k=1}A_k=\varnothing\) 作假设用过吗?\(B\cap\displaystyle\bigcup_{k=1}^\infty A_k^c=B\cap\bigcap_{k=1}^\infty A_m\)不是蠢氏孬种传递还能是什么?
我说你蠢疯顽瞎是个老孬种怎么了?你那么笨大半年下来还是个集论白痴,那么孬到处丢人现眼都没啥责任了呀!都怪某个更老更孬的孬种把你生了出来么。你很无辜。就是种太孬对不对?
回复 支持 反对

使用道具 举报

发表于 2024-6-30 17:25 | 显示全部楼层
elim 发表于 2024-6-29 11:40
蠢疯就是个孬种,什么叫 \(\displaystyle\bigcap_{k=1}A_k=\varnothing\) 时 \(\mathbb{N}=\displaystyle\b ...


1) 证得 \(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}\ne\varnothing\) 的三种方式已被证明均为无效的孬种方式。
elim先生:为什么【证得 \(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}\ne\varnothing\) 的三种方式已被证明均为无效的孬种方式】?是因为周民强的定义是孬种、还是Cantor的交集的运算规律(\(若A\subseteq B,则A=A\cap B\)是孬种?还是Cantor的超穷数理论是孬种?还是因没有用你的“臭便”而致其是孬种?你说不出无效的原因,你凭什么指责这些证明是【无效的孬种形式】?这难道就是你们“现代数学”的”数理逻辑”吗?
2)、在\(B\cap\displaystyle\bigcup_{n=1}^\infty A_n^c=B\cap\varnothing\) 中取\(B=\mathbb{N}\) 得 \(\displaystyle\bigcup_{n=1}^\infty A_n^c=\varnothing\) 谬论.
\(\quad\)相信蠢疯也不想这么丢人现眼,但种孬由不得自己对吧?说我\(\displaystyle\bigcup_{n=1}^\infty A_n^c=\mathbb{N}\)
\(\quad\)的证明刺激了蠢疯脆弱的神经, 犯了此孬来也不是不可以,根源还在孬种种孬。
elim先生,难道你真的看不懂这是对你最近发表的\(N_∞=N_∞\cap N\)\(=N_∞\cap\displaystyle\bigsup\_{m=1}^∞ A_m^c=\phi\)创新表达式的直接否定吗?暂时不管Cantor的种是不是孬种,也暂时不菅在Cantor集合论框架下求得的\(N_∞≠\phi\)是否有效。既然Cantor集合论方法与elim先生的创新方法存在不可忽视的差异,那就有必要引起差异的原因作以分析。初分析知以下两个方面
:①、elim的自然数\(N_e\)是Cator自然数集\(N_c\)的真子集(即\(N_e\subset N_c\);②、\(N_∞\cap A_m^c=\phi\nRightarrow N_∞=\phi\)(对①、②的祥尽今分析放在3))。如果无视①②对求单减集合列极限集的影响,那么必将导致\(\forall B\supseteq\displaystyle\bigcup_{m=1}A_m^c都有B=\phi\).现对这个命题证明如下:
【证明】:设\(B_k=A_k\),易证
\(B=\displaystyle\bigcup_{m=1}^∞ A_m^c\),所以\(B=B\cap B=\displaystyle\bigcup_{m=1}^∞(A_m\cap A_m^c)=\displaystyle\bigcup_{m=1}^∞(\phi)=\phi\)!【证毕】\(B\cap\displaystyle\bigcup_{n=1}^\infty A_n^c=B\cap\varnothing\) 中取\(B=\mathbb{N}\) 得 \(\displaystyle\bigcup_{n=1}^\infty A_n^c=\varnothing\) 谬论.并非是你的\(N_∞=N_∞\cap N=\phi\)【刺激了蠢疯脆弱的神经, 犯了此孬来也不是不可以,根源还在孬种种孬】,而是警示你的创新等式并不完备!

3) 孬种讲数理逻辑? 能看懂下面这段谓词演算吗?
    \(\forall m\in\mathbb{N}\,(m\in A_m^c\subset\displaystyle\bigcup_{n=1}^\infty A_n^c)\implies \big(\bigcup_{n=1}^\infty A_n^c=\mathbb{N}\big)\overset{\text{德摩根}}{\implies} (N_{\infty}=\varnothing)\)
&#8203;elim先生的这段谓词演译的确演译严谨,有理有据。不过乜确实存在2)中提及的两个问题:①\(N_e\)系统拒接受康托尔超穷数。所以在\(N_e\)系统中从而导致皮亚诺公理在逻辑确定的数\(\displaystyle\lim_{n→∞}n无后继,直接导致在N_e中,N_∞=\phi\)的错误结论;②由\(A\cap B=\phi\)既推\(A=\phi\)也推不出\(B=\phi\)的例子较多,除2)所举的\(A_k\cap A_k^c=\phi\)外,凡满足A非空,B非空但\(A\cap B=\phi\)的集合A,B都是其例。所以由\(N_∞\cap A_m^c=\phi\Rightarrow N_∞=\phi\)待商榷。
[/b
回复 支持 反对

使用道具 举报

发表于 2024-6-30 18:17 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-6-30 18:41 编辑
春风晚霞 发表于 2024-6-30 17:25
1) 证得 \(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}\ne\varnothing\) 的三种方式已被证明均 ...



1) 证得 \(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}\ne\varnothing\) 的三种方式已被证明均为无效的孬种方式。
elim先生:为什么【证得 \(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}\ne\varnothing\) 的三种方式已被证明均为无效的孬种方式】?是因为周民强的定义是孬种、还是Cantor的交集的运算规律(\(若A\subseteq B,则A=A\cap B\)是孬种?还是Cantor的超穷数理论是孬种?还是因没有用你的“臭便”而致其是孬种?你说不出无效的原因,你凭什么指责这些证明是【无效的孬种形式】?这难道就是你们“现代数学”的”数理逻辑”吗?
2)、在\(B\cap\displaystyle\bigcup_{n=1}^\infty A_n^c=B\cap\varnothing\) 中取\(B=\mathbb{N}\) 得 \(\displaystyle\bigcup_{n=1}^\infty A_n^c=\varnothing\) 谬论.
\(\quad\)相信蠢疯也不想这么丢人现眼,但种孬由不得自己对吧?说我\(\displaystyle\bigcup_{n=1}^\infty A_n^c=\mathbb{N}\)
\(\quad\)的证明刺激了蠢疯脆弱的神经, 犯了此孬来也不是不可以,根源还在孬种种孬elim先生,难道你真的看不懂这是对你最近发表的\(N_∞=N_∞\cap N\)\(=N_∞\cap\displaystyle\bigcup\_{m=1}^∞ A_m^c=\phi\)创新表达式的直接否定吗?暂时不管Cantor的种是不是孬种,也暂时不菅在Cantor集合论框架下求得的\(N_∞≠\phi\)是否有效。既然Cantor集合论方法与elim先生的创新方法存在不可忽视的差异,那就有必要引起差异的原因作以分析。初分析知以下两个方面:①、elim的自然数\(N_e\)是Cator自然数集\(N_c\)的真子集(即\(N_e\subset N_c\);②、\(N_∞\cap A_m^c=\phi\nRightarrow N_∞=\phi\)(对①、②的祥尽今分析放在3))。如果无视①②对求单减集合列极限集的影响,那么必将导致\(\forall B\supseteq\displaystyle\bigcup_{m=1}A_m^c都有B=\phi\).现对这个命题证明如下:
【证明】:设\(B_k=A_k\),易证
\(B=\displaystyle\bigcup_{m=1}^∞ A_m^c\),所以\(B=B\cap B=\displaystyle\bigcup_{m=1}^∞(A_m\cap A_m^c)=\displaystyle\bigcup_{m=1}^∞(\phi)=\phi\)!【证毕】\(B\cap\displaystyle\bigcup_{n=1}^\infty A_n^c=B\cap\varnothing\) 中取\(B=\mathbb{N}\) 得 \(\displaystyle\bigcup_{n=1}^\infty A_n^c=\varnothing\) 谬论.并非是你的\(N_∞=N_∞\cap N=\phi\)【刺激了蠢疯脆弱的神经, 犯了此孬来也不是不可以,根源还在孬种种孬】,而是警示你的创新等式并不完备!

3) 孬种讲数理逻辑? 能看懂下面这段谓词演算吗?
    \(\forall m\in\mathbb{N}\,(m\in A_m^c\subset\displaystyle\bigcup_{n=1}^\infty A_n^c)\implies \big(\bigcup_{n=1}^\infty A_n^c=\mathbb{N}\big)\overset{\text{德摩根律}}{\implies} (N_{\infty}=\varnothing)\)

elim先生的这段谓词演译的确演译严谨,有理有据。不过也确实存在2)中提及的两个问题:①\(N_e\)系统拒接受康托尔超穷数。所以在\(N_e\)系统中从而导致皮亚诺公理在逻辑确定的数\(\displaystyle\lim_{n→∞}n无后继,直接导致在N_e中,N_∞=\phi\)的错误结论;②由\(A\cap B=\phi\)既推\(A=\phi\)也推不出\(B=\phi\)的例子较多,除2)所举的\(A_k\cap A_k^c=\phi\)外,凡满足A非空,B非空但\(A\cap B=\phi\)的集合A,B都是其例。所以由\(N_∞\cap A_m^c=\phi\Rightarrow N_∞=\phi\)有待商榷。
[/b ]
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-14 00:43 , Processed in 0.082767 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表