数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge\color{red}{\textbf{孬种的超穷自然数捏造畜生不如}}\)

[复制链接]
发表于 2025-4-10 14:36 | 显示全部楼层
elim 发表于 2025-4-10 14:35
\(\{n\}\)是全体自然数所成的严格增序列,
其极限 \(v=\displaystyle\lim_{n\to\infty}n\)必大于序列的各项 ...


       elim,\(\displaystyle\bigcap_{n =1}^{\infty}A_n\ne\phi\),现分两步证明如下:
       一、证明\(v=\displaystyle\lim_{n→∞} n\)是自然数
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
        二、证明\(\displaystyle\bigcap_{n =1}^{\infty}A_n\ne\phi\)   
       【证明:】由一的证明知:\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数,根据皮亚诺公理第二条\(v=\displaystyle\lim_{n\to\infty} n\)的后继\(v+1=\displaystyle\lim_{n\to\infty}(n+1)\)也是逻辑确定的客观存在的自然数。类此证明\(v+j=\displaystyle\lim_{n\to\infty}(n+j)\)\( \quad j\in\mathbb{N}\)也是逻辑确定的客观存在的自然数!
       由于\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\displaystyle\lim_{n→∞} n=\)\(\displaystyle\lim_{n→∞} \{n+1,…,n+j,…\}\)\(\quad(j\in\mathbb{N})\),所以\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n\ne\phi\)!【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-10 14:38 | 显示全部楼层
elim 发表于 2025-4-10 14:37
\(\{n\}\)是全体自然数所成的严格增序列,
其极限 \(v=\displaystyle\lim_{n\to\infty}n\)必大于序列的各项 ...


       elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-10 17:30 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-4-11 10:54 编辑
elim 发表于 2025-4-10 15:14
\(\{n\}\)是全体自然数所成的严格增序列,
其极限 \(v=\displaystyle\lim_{n\to\infty}n\)必大于序列的各项 ...



       elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-11 10:55 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-4-11 16:43 编辑
elim 发表于 2025-4-11 08:09
\(\{n\}\)是全体自然数所成的严格增序列,
其极限 \(v=\displaystyle\lim_{n\to\infty}n\)必大于序列的各项 ...



       elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-11 16:44 | 显示全部楼层

       elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-11 22:12 | 显示全部楼层

       elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】

点评

\(\Huge\textbf{白痴}\color{red}{\textbf{设}\lim n\textbf{ 非自然数, 就不能假定它有前趋}}\)  发表于 2025-4-11 23:19
回复 支持 反对

使用道具 举报

发表于 2025-4-11 23:47 | 显示全部楼层

       elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】

点评

\(\Huge\color{red}{\textbf{设}\lim n\textbf{非自然数就不能假定它有前驱.}}\textbf{白痴!}\)  发表于 2025-4-12 00:12
回复 支持 反对

使用道具 举报

发表于 2025-4-12 04:24 | 显示全部楼层

       elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-12 05:17 | 显示全部楼层
elim孬种,你凭什么说\(v=\displaystyle\lim_{n \to \infty} n\)不是自然数?皮亚诺公理的哪一条指明了\(v=\displaystyle\lim_{n \to \infty} n\)没有前驱?若\(v\)沒有前趋,\(v-1\)有没有前趋?\(v-2\)有没有前趋?…你他娘的还是去看看康托尔对他的有穷基数的无穷序列1,2,3,…,\(\nu\),ω+1,ω+2,…中的\(\nu\)\((\nu=\displaystyle\lim_{n \to \infty} n)\)的解释吧?你他娘的真扯淡,证明集合交等于空集的论据不是集合交的定义及运算规律,证明\(v=\displaystyle\lim_{n \to \infty} n\)不是自然数的理论依据也不是皮亚诺公理。你他娘的黄牛黑卵子另外一条胫,这样的论证能得出正确的结果吗?
回复 支持 反对

使用道具 举报

发表于 2025-4-12 07:00 | 显示全部楼层
elim孬种,你凭什么说\(v=\displaystyle\lim_{n \to \infty} n\)不是自然数?皮亚诺公理的哪一条指明了\(v=\displaystyle\lim_{n \to \infty} n\)没有前驱?若\(v\)沒有前趋,\(v-1\)有没有前趋?\(v-2\)有没有前趋?…你他娘的还是去看看康托尔对他的有穷基数的无穷序列1,2,3,…,\(\nu\),ω+1,ω+2,…中的\(\nu\)\((\nu=\displaystyle\lim_{n \to \infty} n)\)的解释吧?你他娘的真扯淡,证明集合交等于空集的论据不是集合交的定义及运算规律,证明\(v=\displaystyle\lim_{n \to \infty} n\)不是自然数的理论依据也不是皮亚诺公理。你他娘的黄牛黑卵子另外一条胫,这样的论证能得出正确的结果吗?
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-17 06:21 , Processed in 0.096043 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表