数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge^\star\;\color{blue}{\lim n}\color{red}{\textbf{ 不满足皮亚诺公理}}\)

[复制链接]
发表于 2025-7-12 06:36 | 显示全部楼层
elim 发表于 2025-7-11 20:55
对 \(v=\lim n\), \(v-1\)不是皮亚诺意义下 \(v\) 的前
驱, 事实上对无穷数或无穷基数皆有\(v-1=v\) ,
...


命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}【证毕】
        对于这个命题的证明,elim提如下反驳意见,1、【对\(v=\displaystyle\lim_{n \to \infty}n,v-1\)不是皮亚诺意义下\(v\) 的前驱;2、\(v=\displaystyle\lim_{n \to \infty}n\)是自然数全序列\(\{n\}\)的上确界】。
        其实elim的两条反驳意见都是反康托尔、反皮亚诺、反冯\(\cdot\)诺依曼自然数理论的。近代数学证明康托尔、皮亚诺、冯\(\cdot\)衣曼自然数理论是兼容的。现以皮亚诺公理回复elim的两条置疑:
        1、皮亚谨五条公理其有五条,①、0是自然数:确立自然数集合的起点。②、每个自然数有唯一后继数:若a是自然数,则其后继数a'(即a+1)也是自然数。③、0不是任何自然数的后继数:排除循环或有限数集的可能性。④、不同自然数后继数不同:保证自然数序列的无限性与唯一性。⑤、归纳公理:若集合S包含0且对后继运算封闭,则S包含所有自然数(支撑数学归纳法)。其中第③明确指出\(\color{red}{0不是任何自然数的后继数}\):排除循环或有限数集的可能性。换句话讲\(\mathbb{N}\)中任何非0数(包括\(v=\displaystyle\lim_{n \to \infty}n\))都有前趋。,所以,elim的【\(v=\displaystyle\lim_{n \to \infty}n,v-1\)不是皮亚诺意义下\(v\) 的前驱】是没现行数学理论支撑的。退一万步讲该命题的证明中从第一步到【……\((k+1)\notin\mathbb{N}\)】不就是讲的在\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)的题设条件下\(v=v-1=v-2……\notin\mathbb{N}\)吗?
       2、在康托尔、皮亚诺、冯\(\cdot\)诺依曼自然数理论没有【\(v=\displaystyle\lim_{n \to \infty}n\)是自然数全序列\(\{n\}\)的上确界】一说,由此引发的任矛盾皆因elim对自然数集\(\mathbb{N}\)上确界定义不自洽所致。
        所以,elim反康托、反皮亚诺逻辑的言elim行确实被畜生不如

回复 支持 反对

使用道具 举报

发表于 2025-7-12 07:52 | 显示全部楼层
elim 发表于 2025-7-12 07:38
对 \(v=\lim n\), \(v-1\)不是皮亚诺意义下 \(v\) 的前
驱, 事实上对无穷数或无穷基数皆有\(v-1=v\) ,
...


命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}【证毕】
        对于这个命题的证明,elim提如下反驳意见,1、【对\(v=\displaystyle\lim_{n \to \infty}n,v-1\)不是皮亚诺意义下\(v\) 的前驱;2、\(v=\displaystyle\lim_{n \to \infty}n\)是自然数全序列\(\{n\}\)的上确界】。
        其实elim的两条反驳意见都是反康托尔、反皮亚诺、反冯\(\cdot\)诺依曼自然数理论的。近代数学证明康托尔、皮亚诺、冯\(\cdot\)衣曼自然数理论是兼容的。现以皮亚诺公理回复elim的两条置疑:
        1、皮亚谨五条公理其有五条,①、0是自然数:确立自然数集合的起点。②、每个自然数有唯一后继数:若a是自然数,则其后继数a'(即a+1)也是自然数。③、0不是任何自然数的后继数:排除循环或有限数集的可能性。④、不同自然数后继数不同:保证自然数序列的无限性与唯一性。⑤、归纳公理:若集合S包含0且对后继运算封闭,则S包含所有自然数(支撑数学归纳法)。其中第③明确指出\(\color{red}{0不是任何自然数的后继数}\):排除循环或有限数集的可能性。换句话讲\(\mathbb{N}\)中任何非0数(包括\(v=\displaystyle\lim_{n \to \infty}n\))都有前趋。所以,elim的谎言【对\(v=\displaystyle\lim_{n \to \infty}n\),\(v-1\)不是皮亚诺意义下\(v\) 的前驱】是没现行数学理论支撑的。退一万步讲该命题的证明中从第一步到【……\((k+1)\notin\mathbb{N}\)】不就是讲的在\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)的题设条件下\(v=v-1=v-2……\notin\mathbb{N}\)吗?
       2、在康托尔、皮亚诺、冯\(\cdot\)诺依曼自然数理论没有【\(v=\displaystyle\lim_{n \to \infty}n\)是自然数全序列\(\{n\}\)的上确界】一说,由此引发的任矛盾皆因elim对自然数集\(\mathbb{N}\)上确界定义不自洽所致。
        所以,elim反康托、反皮亚诺逻辑的言elim行确实畜生不如
回复 支持 反对

使用道具 举报

发表于 2025-7-12 17:30 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}【证毕】
        对于这个命题的证明,elim提如下反驳意见:
        1、【对\(v=\displaystyle\lim_{n \to \infty}n,v-1\)不是皮亚诺意义下\(v\) 的前驱;
        2、\(v=\displaystyle\lim_{n \to \infty}n\)是自然数全序列\(\{n\}\)的上确界】。
        其实elim的两条反驳意见都是反康托尔、反皮亚诺、反冯\(\cdot\)诺依曼自然数理论的。近代数学证明康托尔、皮亚诺、冯\(\cdot\)衣曼自然数理论是兼容的。现以皮亚诺公理回复elim的两条置疑:
        1、皮亚谨五条公理其有五条,①、0是自然数:确立自然数集合的起点。②、每个自然数有唯一后继数:若a是自然数,则其后继数a'(即a+1)也是自然数。③、0不是任何自然数的后继数:排除循环或有限数集的可能性。④、不同自然数后继数不同:保证自然数序列的无限性与唯一性。⑤、归纳公理:若集合S包含0且对后继运算封闭,则S包含所有自然数(支撑数学归纳法)。其中第③明确指出\(\color{red}{0不是任何自然数的后继数}\):排除循环或有限数集的可能性。换句话讲\(\mathbb{N}\)中任何非0数(包括\(v=\displaystyle\lim_{n \to \infty}n\))都有前趋。所以,elim的谎言【对\(v=\displaystyle\lim_{n \to \infty}n\),\(v-1\)不是皮亚诺意义下\(v\) 的前驱】是没现行数学理论支撑的。退一万步讲该命题的证明中从第一步到【……\((k+1)\notin\mathbb{N}\)】不就是讲的在\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)的题设条件下\(v=v-1=v-2……\notin\mathbb{N}\)吗?
       2、在康托尔、皮亚诺、冯\(\cdot\)诺依曼自然数理论没有【\(v=\displaystyle\lim_{n \to \infty}n\)是自然数全序列\(\{n\}\)的上确界】一说,由此引发的任矛盾皆因elim对自然数集\(\mathbb{N}\)上确界定义不自洽所致。
        所以,elim反康托、反皮亚诺逻辑的言elim行确实畜生不如
回复 支持 反对

使用道具 举报

发表于 2025-7-12 22:22 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}【证毕】
        对于这个命题的证明,elim提如下反驳意见:
        1、【对\(v=\displaystyle\lim_{n \to \infty}n,v-1\)不是皮亚诺意义下\(v\) 的前驱;
        2、\(v=\displaystyle\lim_{n \to \infty}n\)是自然数全序列\(\{n\}\)的上确界】。
        其实elim的两条反驳意见都是反康托尔、反皮亚诺、反冯\(\cdot\)诺依曼自然数理论的。近代数学证明康托尔、皮亚诺、冯\(\cdot\)衣曼自然数理论是兼容的。现以皮亚诺公理回复elim的两条置疑:
        1、皮亚谨五条公理其有五条,①、0是自然数:确立自然数集合的起点。②、每个自然数有唯一后继数:若a是自然数,则其后继数a'(即a+1)也是自然数。③、0不是任何自然数的后继数:排除循环或有限数集的可能性。④、不同自然数后继数不同:保证自然数序列的无限性与唯一性。⑤、归纳公理:若集合S包含0且对后继运算封闭,则S包含所有自然数(支撑数学归纳法)。其中第③明确指出\(\color{red}{0不是任何自然数的后继数}\):排除循环或有限数集的可能性。换句话讲\(\mathbb{N}\)中任何非0数(包括\(v=\displaystyle\lim_{n \to \infty}n\))都有前趋。所以,elim的谎言【对\(v=\displaystyle\lim_{n \to \infty}n\),\(v-1\)不是皮亚诺意义下\(v\) 的前驱】是没现行数学理论支撑的。退一万步讲该命题的证明中从第一步到【……\((k+1)\notin\mathbb{N}\)】不就是讲的在\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)的题设条件下\(v=v-1=v-2……\notin\mathbb{N}\)吗?
       2、在康托尔、皮亚诺、冯\(\cdot\)诺依曼自然数理论没有【\(v=\displaystyle\lim_{n \to \infty}n\)是自然数全序列\(\{n\}\)的上确界】一说,由此引发的任矛盾皆因elim对自然数集\(\mathbb{N}\)上确界定义不自洽所致。
        所以,elim反康托、反皮亚诺逻辑的言elim行确实畜生不如
回复 支持 反对

使用道具 举报

发表于 2025-7-13 07:02 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-7-13 07:04 编辑
elim 发表于 2025-7-13 00:09
对 \(v=\lim n\), \(v-1\)不是皮亚诺意义下 \(v\) 的前
驱, 事实上对无穷数或无穷基数皆有\(v-1=v\) ,
...


根据皮亚诺公理笫三条\(\mathbb{N}\)中任何非0数都有前趋!因\(\displaystyle\lim_{n \to \infty}n\ne 0\),所以\(\displaystyle\lim_{n \to \infty}n\)也有前趋!elim除了欺己骗人,毫无现行数学理论支撑!自创的自然数理论既不自洽,也不兼容。
回复 支持 反对

使用道具 举报

发表于 2025-7-13 12:42 | 显示全部楼层
elim,你什么时侯证明lim n 没有前趋?你什么时侯证明了 lim n 不是自然数?按你的认识自然数皆有限数,由所有限数所成的集合必为有限集。根据自然数集合的良序性,你所构造的自然数集\(\mathbb{N}_e\)必存在最大自然数\(n_e\),那么\(n_e+1\)还是不是自然数?如果\(n_e+1\)是自然数,它与\(n_e\)是最大自然数矛盾。如果\(n_e+1\)不是自然数,那么这一结果又与皮亚诺公理第二条、第五条矛盾!所以最终只能得\(\mathbb{N}_e\)不是现行数学中的自然数集\(\mathbb{N}\)!elim,数学是一门讲理的科学。不论你怎样耍赖撒泼,你都无法否认\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
回复 支持 反对

使用道具 举报

发表于 2025-11-6 07:51 | 显示全部楼层

        无论是康托尔还是冯\(\cdot\)诺依曼的自然数生或法刨中永远找不到\(ω=\mathbb{N}\)这样狗屁不通的表达式!ω是康托尔实正整数系中的第二个极限序数(第一个极限序数是0),无穷小数序数是elim毫无根据的造。因为无穷是无穷小的倒数,数学中永远都没有最大无穷小量之说,故此翻遍故今中外的数学典籍都找不到“最小无数”这一提法!还有康托尔、冯\(\cdot\)诺依曼数系中的每个自然数都是由\(\phi\)这个特殊的都限集的基数生成的。所以elim的自然数知识近乎白痴,还有利用elim对无穷大的定义,除了抬杠是计么事情都办不]的。如若众网友对无穷大深入研究的话,历別用现行教科书关于无穷大的定义和elim关于无穷大的定义去证明一下希尔伯持无穷宾馆,看看哪种定义能达到目的?
回复 支持 反对

使用道具 举报

发表于 2025-11-6 07:52 | 显示全部楼层

        无论是康托尔还是冯\(\cdot\)诺依曼的自然数生或法刨中永远找不到\(ω=\mathbb{N}\)这样狗屁不通的表达式!ω是康托尔实正整数系中的第二个极限序数(第一个极限序数是0),无穷小数序数是elim毫无根据的造。因为无穷是无穷小的倒数,数学中永远都没有最大无穷小量之说,故此翻遍故今中外的数学典籍都找不到“最小无数”这一提法!还有康托尔、冯\(\cdot\)诺依曼数系中的每个自然数都是由\(\phi\)这个特殊的都限集的基数生成的。所以elim的自然数知识近乎白痴,还有利用elim对无穷大的定义,除了抬杠是计么事情都办不]的。如若众网友对无穷大深入研究的话,历別用现行教科书关于无穷大的定义和elim关于无穷大的定义去证明一下希尔伯持无穷宾馆,看看哪种定义能达到目的?
回复 支持 反对

使用道具 举报

发表于 2025-11-6 07:53 | 显示全部楼层

        无论是康托尔还是冯\(\cdot\)诺依曼的自然数生或法刨中永远找不到\(ω=\mathbb{N}\)这样狗屁不通的表达式!ω是康托尔实正整数系中的第二个极限序数(第一个极限序数是0),无穷小数序数是elim毫无根据的造。因为无穷是无穷小的倒数,数学中永远都没有最大无穷小量之说,故此翻遍故今中外的数学典籍都找不到“最小无数”这一提法!还有康托尔、冯\(\cdot\)诺依曼数系中的每个自然数都是由\(\phi\)这个特殊的都限集的基数生成的。所以elim的自然数知识近乎白痴,还有利用elim对无穷大的定义,除了抬杠是计么事情都办不]的。如若众网友对无穷大深入研究的话,历別用现行教科书关于无穷大的定义和elim关于无穷大的定义去证明一下希尔伯持无穷宾馆,看看哪种定义能达到目的?
回复 支持 反对

使用道具 举报

发表于 2025-11-6 07:54 | 显示全部楼层

        无论是康托尔还是冯\(\cdot\)诺依曼的自然数生或法刨中永远找不到\(ω=\mathbb{N}\)这样狗屁不通的表达式!ω是康托尔实正整数系中的第二个极限序数(第一个极限序数是0),无穷小数序数是elim毫无根据的造。因为无穷是无穷小的倒数,数学中永远都没有最大无穷小量之说,故此翻遍故今中外的数学典籍都找不到“最小无数”这一提法!还有康托尔、冯\(\cdot\)诺依曼数系中的每个自然数都是由\(\phi\)这个特殊的都限集的基数生成的。所以elim的自然数知识近乎白痴,还有利用elim对无穷大的定义,除了抬杠是计么事情都办不]的。如若众网友对无穷大深入研究的话,历別用现行教科书关于无穷大的定义和elim关于无穷大的定义去证明一下希尔伯持无穷宾馆,看看哪种定义能达到目的?
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-12-8 02:21 , Processed in 0.090200 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表