|
本帖最后由 愚工688 于 2019-3-24 10:12 编辑
你的公式,只能针对一类特定类型的偶数;我的公式是计算连续的偶数而不需要区分类型;
你的计算值的相对误差在13%左右,还要说好?
看看我用修正系数 μ=0.1586 的连乘式计算的偶数素对计算值的相对误差是多少吧 :
G(60000000000) = 186693890;
inf( 60000000000 )≈ 186583228.3 , Δ≈-0.0005927 ,infS(m) = 69968710.59 , k(m)= 2.66667
G(60000000002) = 70015414;
inf( 60000000002 )≈ 69968710.6 , Δ≈-0.0006670 , infS(m) = 69968710.59 , k(m)= 1
G(60000000004) = 84015179;
inf( 60000000004 )≈ 83962452.7 , Δ≈-0.0006276 , infS(m) = 69968710.60 , k(m)= 1.2
G(60000000006) = 141482454;
inf( 60000000006 )≈ 141395928.5 , Δ≈-0.0006116 ,infS(m) = 69968710.60 , k(m)= 2.02085
G(60000000008) = 76722398;
inf( 60000000008 )≈ 76674884.8 , Δ≈-0.0006193 , infS(m) = 69968710.60, k(m)= 1.09585
计算式:
inf( 60000000000 ) = 1/(1+ .1586 )*( 60000000000 /2 -2)*p(m) ≈ 186583228.3
inf( 60000000002 ) = 1/(1+ .1586 )*( 60000000002 /2 -2)*p(m) ≈ 69968710.6
inf( 60000000004 ) = 1/(1+ .1586 )*( 60000000004 /2 -2)*p(m) ≈ 83962452.7
inf( 60000000006 ) = 1/(1+ .1586 )*( 60000000006 /2 -2)*p(m) ≈ 141395928.5
inf( 60000000008 ) = 1/(1+ .1586 )*( 60000000008 /2 -2)*p(m) ≈ 76674884.8
G(65000000000) = 109589636;
inf( 65000000000 )≈ 109549169.5 , Δ≈-0.0003693 ,infS(m) = 75315054.05 , k(m)= 1.45455
G(65000000002) = 90413681;
inf( 65000000002 )≈ 90378064.9 , Δ≈-0.0003939 , infS(m) = 75315054.05 , k(m)= 1.2
G(65000000004) = 160728841;
inf( 65000000004 )≈ 160672115.3 , Δ≈-0.0003529 ,infS(m) = 75315054.06 , k(m)= 2.13333
G(65000000006) = 75681084;
inf( 65000000006 )≈ 75658568.3 , Δ≈-0.0002975 , infS(m) = 75315054.06 , k(m)= 1.00456
G(65000000008) = 79769666;
inf( 65000000008 )≈ 79745351.4 , Δ≈-0.0003048 ,infS(m) = 75315054.06 , k(m)= 1.05882
计算式:
inf( 65000000000 ) = 1/(1+ .1586 )*( 65000000000 /2 -2)*p(m) ≈ 109549169.5
inf( 65000000002 ) = 1/(1+ .1586 )*( 65000000002 /2 -2)*p(m) ≈ 90378064.9
inf( 65000000004 ) = 1/(1+ .1586 )*( 65000000004 /2 -2)*p(m) ≈ 160672115.3
inf( 65000000006 ) = 1/(1+ .1586 )*( 65000000006 /2 -2)*p(m) ≈ 75658568.3
inf( 65000000008 ) = 1/(1+ .1586 )*( 65000000008 /2 -2)*p(m) ≈ 79745351.4
|
|