数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 蔡家雄

判定梅森质数的卢卡斯序列

  [复制链接]
 楼主| 发表于 2023-3-28 11:01 | 显示全部楼层
由 a=10^ 829234669021142364838760745379758741606216040730482684058
29930428679421202052082114

与 b= 1658469338042284729677521490759517483212432081460965368116598
60857358842404104164229

则 a/b 的余数==
回复 支持 反对

使用道具 举报

发表于 2023-3-28 12:20 | 显示全部楼层
蔡家雄 发表于 2023-3-28 03:01
由 a=10^ 829234669021142364838760745379758741606216040730482684058
29930428679421202052082114

由 a=10^ 829234669021142364838760745379758741606216040730482684058
29930428679421202052082114

与 b= 1658469338042284729677521490759517483212432081460965368116598
60857358842404104164229

则 a/b 的余数=165846933804228472967752149075951748321243208146096536811659860857358842404104164228

评分

参与人数 1威望 +15 收起 理由
wlc1 + 15 赞一个!

查看全部评分

回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-3-28 20:45 | 显示全部楼层
由 7537=30k+7 是素数,

且 7537^25*16+1 是素数,

则 10 是素数 7537^25*16+1 的原根。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-3-28 20:48 | 显示全部楼层
由 3307=30k+7 是素数,

且 3307^25*256+1 是素数,

则 10 是素数 3307^25*256+1 的原根。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-3-31 18:33 | 显示全部楼层
a=10^53352972396254682376454958591044147445720489366812906876401715940921895473339240568390883670749090662055936

b=106705944792509364752909917182088294891440978733625813752803431881843790946678481136781767341498181324111873

则 a/b 的余数==

点评

则 a/b 的余数==b-1  发表于 2023-4-1 10:56
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-4-1 10:02 | 显示全部楼层
这样的三生素数有多少?

求 20k+11, 40k+23, 80k+47 都是素数,,,
回复 支持 反对

使用道具 举报

发表于 2023-4-1 10:37 | 显示全部楼层
蔡家雄 发表于 2023-4-1 10:02
这样的三生素数有多少?

求 20k+11, 40k+23, 80k+47 都是素数,,,

2023-04-01 10:35:58
k=0: 11,23,47
k=51: 1031,2063,4127
k=72: 1451,2903,5807
k=75: 1511,3023,6047
k=90: 1811,3623,7247
k=96: 1931,3863,7727
k=174: 3491,6983,13967
k=195: 3911,7823,15647
k=306: 6131,12263,24527
k=357: 7151,14303,28607
k=534: 10691,21383,42767
k=558: 11171,22343,44687
k=573: 11471,22943,45887
k=840: 16811,33623,67247
k=909: 18191,36383,72767
k=999: 19991,39983,79967
k=1020: 20411,40823,81647
k=1050: 21011,42023,84047
k=1113: 22271,44543,89087
k=1227: 24551,49103,98207
k=1476: 29531,59063,118127
k=1542: 30851,61703,123407
k=1626: 32531,65063,130127
k=1812: 36251,72503,145007
k=1899: 37991,75983,151967
k=2106: 42131,84263,168527
k=2130: 42611,85223,170447
k=2184: 43691,87383,174767
k=2490: 49811,99623,199247
k=2631: 52631,105263,210527
k=2652: 53051,106103,212207
k=2781: 55631,111263,222527
k=2844: 56891,113783,227567
k=2910: 58211,116423,232847
k=3087: 61751,123503,247007
k=3339: 66791,133583,267167
k=3645: 72911,145823,291647
k=3687: 73751,147503,295007
k=3738: 74771,149543,299087
k=3801: 76031,152063,304127
k=4032: 80651,161303,322607
k=4206: 84131,168263,336527
k=4296: 85931,171863,343727
k=4353: 87071,174143,348287
k=4548: 90971,181943,363887
k=4668: 93371,186743,373487
k=4695: 93911,187823,375647
k=4836: 96731,193463,386927
k=4893: 97871,195743,391487
k=4977: 99551,199103,398207
k=5298: 105971,211943,423887
k=5406: 108131,216263,432527
k=5487: 109751,219503,439007
k=5628: 112571,225143,450287
k=5634: 112691,225383,450767
k=5766: 115331,230663,461327
k=5868: 117371,234743,469487
k=6033: 120671,241343,482687
k=6081: 121631,243263,486527
k=6096: 121931,243863,487727
k=6123: 122471,244943,489887
k=6186: 123731,247463,494927
k=6384: 127691,255383,510767
k=6474: 129491,258983,517967
k=6579: 131591,263183,526367
k=6708: 134171,268343,536687
k=6729: 134591,269183,538367
k=6792: 135851,271703,543407
k=6837: 136751,273503,547007
k=6978: 139571,279143,558287
k=7005: 140111,280223,560447
k=7041: 140831,281663,563327
k=7233: 144671,289343,578687
k=7404: 148091,296183,592367
k=7476: 149531,299063,598127
k=7800: 156011,312023,624047
k=7833: 156671,313343,626687
k=7917: 158351,316703,633407
k=7971: 159431,318863,637727
k=8001: 160031,320063,640127
k=8112: 162251,324503,649007
k=8136: 162731,325463,650927
k=8241: 164831,329663,659327
k=8850: 177011,354023,708047
k=8955: 179111,358223,716447
k=9282: 185651,371303,742607
k=9483: 189671,379343,758687
k=9609: 192191,384383,768767
k=9630: 192611,385223,770447
k=9648: 192971,385943,771887
k=9687: 193751,387503,775007
k=9882: 197651,395303,790607
k=9924: 198491,396983,793967
k=9960: 199211,398423,796847
k=10017: 200351,400703,801407
k=10509: 210191,420383,840767
k=10908: 218171,436343,872687
k=10953: 219071,438143,876287
k=11115: 222311,444623,889247
k=11136: 222731,445463,890927
k=11283: 225671,451343,902687
k=11349: 226991,453983,907967
k=11415: 228311,456623,913247
k=11556: 231131,462263,924527
k=11643: 232871,465743,931487
k=11739: 234791,469583,939167
k=11853: 237071,474143,948287
k=11895: 237911,475823,951647
k=12150: 243011,486023,972047
k=12285: 245711,491423,982847
k=12336: 246731,493463,986927
k=12417: 248351,496703,993407
用时 0.07814 秒

评分

参与人数 2威望 +30 收起 理由
cz1 + 15 赞一个!
wlc1 + 15 赞一个!

查看全部评分

回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-4-1 18:00 | 显示全部楼层
ysr 发表于 2023-3-28 12:20
由 a=10^ 829234669021142364838760745379758741606216040730482684058
29930428679421202052082114

王兄:您的幂运算程序计算结果用截图,这样网友自然相信!

a=10^53352972396254682376454958591044147445720489366812906876401715940921895473339240568390883670749090662055936

b=106705944792509364752909917182088294891440978733625813752803431881843790946678481136781767341498181324111873

则 a/b 的余数==


回复 支持 反对

使用道具 举报

发表于 2023-4-1 18:24 | 显示全部楼层

蔡家雄 发表于 2023-4-1 10:00
王兄:您的幂运算程序计算结果用截图,这样网友自然相信!

a=10^53352972396254682376454958591044147 ...

a=10^53352972396254682376454958591044147445720489366812906876401715940921895473339240568390883670749090662055936

b=106705944792509364752909917182088294891440978733625813752803431881843790946678481136781767341498181324111873

则 a/b 的余数=106705944792509364752909917182088294891440978733625813752803431881843790946678481136781767341498181324111872

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

评分

参与人数 1威望 +15 收起 理由
wlc1 + 15 很给力!

查看全部评分

回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-4-1 18:35 | 显示全部楼层
a=10^2505370052099275120508237863137388118628766388097053489698241545494499502886035017041779695230608294785304231936

b=5010740104198550241016475726274776237257532776194106979396483090988999005772070034083559390461216589570608463873

则 a/b 的余数==
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-18 08:21 , Processed in 0.146581 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表