t
根据威尔斯特拉斯极限定义中的〖对任给的ε>0,存在\(N_ε>0\),当n>\(N_ε>0\)时,恒有|\(a_n-a|<ε\),则称常数a是数列\(\{a_n\}\)的极限,记为\(\displaystyle\lim_{n→∞}a_n=a\)〗以及无穷大的定义〖若整序变量\(x_n\),由某项开始,其绝对值变成且保持着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|\(x_n |>N_E\)则称变量\(x_n\)为无穷大〗(参见菲赫全哥尔茨《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义),整序变量\(N_ε\)(也就是正整数)把自然数集N分成两个部分,且自然数集N=\(\{n|n≤N_ε,n∈N\}\bigcup\{n|n>N_ε,n∈N\}\),所以\(a_n=\begin{cases}
f(x)\;\;x∈\{n|n≤N_ε,n∈N\}&①\\a\;\;\;x∈\{n|n>N_ε,n∈N\}&②
\end{cases}\)所以当n→∞(即n∈\(\{n|n>N_ε,n∈N\}\)时,\(a_n=a\)!