数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge^\star\textbf{ 蠢可达}\,\color{red}{\textbf{反}}\,\textbf{单调收敛定理}\)

[复制链接]
发表于 2025-10-23 10:03 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-10-23 10:23 编辑


        试问elim,\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}2n\)谁大?!\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}10^n\)谁大?!由单增集列\(\{A_n=\{m|m\le n\in\mathbb{N}\}\),得\(\mathbb{N}=\displaystyle\bigcup_{n=1}^{\infty}A_n=\)\(\{1,2,3,…,\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}\)\(\implies\)\(\displaystyle\lim_{n \to \infty}n\in\)\(\mathbb{N}\)\(\color{red}{错在哪里}?\)\(\color{red}{为什么是错的}?\)若elim说不出个子午卯酉,elim就是反数学,就是畜牲不如!
回复 支持 反对

使用道具 举报

发表于 2025-10-23 10:23 | 显示全部楼层

        试问elim,\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}2n\)谁大?!\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}10^n\)谁大?!由单增集列\(\{A_n=\{m|m\le n\in\mathbb{N}\}\),得\(\mathbb{N}=\displaystyle\bigcup_{n=1}^{\infty}A_n=\)\(\{1,2,3,…,\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}\)\(\implies\)\(\displaystyle\lim_{n \to \infty}n\in\)\(\mathbb{N}\)\(\color{red}{错在哪里}?\)\(\color{red}{为什么是错的}?\)若elim说不出个子午卯酉,elim就是反数学,就是畜牲不如!
回复 支持 反对

使用道具 举报

发表于 2025-10-23 10:31 | 显示全部楼层

        elim于2025-10-11 01:16发贴称【极限存在并被函数值达到的严格数学表述只能是\(\displaystyle\lim_{x\to \lambda}f(x)=\)\(f(\displaystyle\lim_{x\to\lambda})=\)\(f(\lambda)\) 即函数连续..然而春霞认为不存在\(\displaystyle\lim_{x\to \lambda}f(x)\ne\)\(f(\lambda)\)或\(f在\lambda 无定义\)】
        elim的这段论述,对于连续函数来说,当然是正确的,但elim确忽略了连续函数在区间端点的极限存在,的讨论,连续函数要求在连续区间的左端点右连续,右端点左连续。还有函数数间断点,要求函数在该点无定义:骊于函数\(f(x)=\tfrac{1}{x}\),\(f(x)\)在\(\infty\)是有定义的,因为无穷大量的倒数是无穷小量,这就是它的定义。其实春风晚霞〖只要极限存在,就一定可达〗的数学表达式就是\(\displaystyle\lim_{n \to \infty}f(n)\)=\(f(\displaystyle\lim_{n \to \infty}n)\),如\(a_n=f(n)=2^n\)\(\implies\)\(\displaystyle\lim_{n \to \infty}a_n=\)\(2^{\displaystyle\lim_{n \to \infty}n}\)至于e氏【然而春霞认为不存在\(\displaystyle\lim_{x\to \lambda}f(x)\ne\)\(f(\lambda)\)或\(f在\lambda 无定义\)】这是对春风晚霞的栽脏,换句话讲极限存在,但又不可达那也只是e氏数学的事,与现行数学无关,更春风晚霞无关!

回复 支持 反对

使用道具 举报

发表于 2025-10-23 21:13 | 显示全部楼层

     对于〖试问elim,\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}2n\)谁大?!\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}10^n\)谁大?!由单增集列\(\{A_n=\{m|m\le n\in\mathbb{N}\}\),得\(\mathbb{N}=\displaystyle\bigcup_{n=1}^{\infty}A_n=\)\(\{1,2,3,…,\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}\)\(\implies\)\(\displaystyle\lim_{n \to \infty}n\in\)\(\mathbb{N}\)\(\color{red}{错在哪里}?\)\(\color{red}{为什么是错的}?\)若elim说不出个子午卯酉,elim就是反数学,就是畜牲不如!〗
        elim对上面问题作出了如下回答:
     【 \(\{2n\}\)、\(\{10^n\}\)等都是自然数列\(\{n\}\)的子列.它们的极限都是\(Sup\mathbb{N}\)即分析中的\(+\infty\)..定义\(A_n=\{m|n<m\in\mathbb{N}\}\)\((n\in\mathbb{N})\),则\(\mathbb{N}= \displaystyle\bigcup_{n=1}^{\infty}A_n\ne\)\(\{1,2,3,…\)\(\displaystyle\lim_{n \to \infty}n\}\)因为无穷大\(\displaystyle\lim_{n \to \infty}n\)不是有限集的基数\((\displaystyle\lim_{n \to \infty}n\notin A_k\)\((\forall k\in\mathbb{N}))\)】
        然而,这个回答elim仍没有说出个子午卯酉,首先\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}10^n\)和\(\displaystyle\lim_{n \to \infty}n\)是可以比较大小的。因为\(\displaystyle\lim_{n \to \infty}\tfrac{2n}{n}=2\), \(\displaystyle\lim_{n \to \infty}\tfrac{10^n}{n}=\infty\),所以\(\displaystyle\lim_{n \to \infty}2n\)和\(\displaystyle\lim_{n \to \infty}n\)是同阶无穷大,\(\displaystyle\lim_{n \to \infty}10^n\)是\(\displaystyle\lim_{n \to \infty}n\)的高阶无穷大!elim对无穷大的认知还停留在3000多年印度人的对无穷大认知的程度上。所以你无法理解\(\displaystyle\lim_{n \to \infty}(n-1)\)、\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}(n+1)\)是三个不同的自然数。当然你也就不明白你错没错,错在哪里了。
        其次elim的【因为无穷大\(\displaystyle\lim_{n \to \infty}n\)不是有限集的基数\((\displaystyle\lim_{n \to \infty}n\notin A_k\)\((\forall k\in\mathbb{N}))\)】的说法是错误的。有限集的基数是可以生成\(\displaystyle\lim_{n \to \infty}n\)的,具体生成过程可参看余希元等著《初等代数研究》P4页定义1:有限集的基数叫做自然数;也可参看张峰陶然著《集合论基础教程》P83页冯\(\cdot\)诺依曼自然数生成法的解读。余希元、张峰他们研究的自然数体系都是由\(\phi\)这个特珠的有限集生成的。康托尔的幂集定理(即连续统假设)不也说明由基数为\(\aleph_0\)生成的自然数有\(2^{\aleph_0}\)个吗?elim,周民强《实变函数论》定义1.8与1.9是自洽的,你由周民强《实变函数论》定义1.8得不到\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)只能说明你没有弄懂〖有限集的基数是自然数〗的真正含意!所以你虽然作出了牵强的解释,但你仍没有说个子午卯酉,所以你仍畜生不如!

回复 支持 反对

使用道具 举报

发表于 2025-10-24 03:23 | 显示全部楼层

     对于〖试问elim,\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}2n\)谁大?!\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}10^n\)谁大?!由单增集列\(\{A_n=\{m|m\le n\in\mathbb{N}\}\),得\(\mathbb{N}=\displaystyle\bigcup_{n=1}^{\infty}A_n=\)\(\{1,2,3,…,\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}\)\(\implies\)\(\displaystyle\lim_{n \to \infty}n\in\)\(\mathbb{N}\)\(\color{red}{错在哪里}?\)\(\color{red}{为什么是错的}?\)若elim说不出个子午卯酉,elim就是反数学,就是畜牲不如!〗
        elim对上面问题作出了如下回答:
     【 \(\{2n\}\)、\(\{10^n\}\)等都是自然数列\(\{n\}\)的子列.它们的极限都是\(Sup\mathbb{N}\)即分析中的\(+\infty\)..定义\(A_n=\{m|n<m\in\mathbb{N}\}\)\((n\in\mathbb{N})\),则\(\mathbb{N}= \displaystyle\bigcup_{n=1}^{\infty}A_n\ne\)\(\{1,2,3,…\)\(\displaystyle\lim_{n \to \infty}n\}\)因为无穷大\(\displaystyle\lim_{n \to \infty}n\)不是有限集的基数\((\displaystyle\lim_{n \to \infty}n\notin A_k\)\((\forall k\in\mathbb{N}))\)】
        然而,这个回答elim仍没有说出个子午卯酉,首先\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}10^n\)和\(\displaystyle\lim_{n \to \infty}n\)是可以比较大小的。因为\(\displaystyle\lim_{n \to \infty}\tfrac{2n}{n}=2\), \(\displaystyle\lim_{n \to \infty}\tfrac{10^n}{n}=\infty\),所以\(\displaystyle\lim_{n \to \infty}2n\)和\(\displaystyle\lim_{n \to \infty}n\)是同阶无穷大,\(\displaystyle\lim_{n \to \infty}10^n\)是\(\displaystyle\lim_{n \to \infty}n\)的高阶无穷大!elim对无穷大的认知还停留在3000多年印度人的对无穷大认知的程度上。所以你无法理解\(\displaystyle\lim_{n \to \infty}(n-1)\)、\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}(n+1)\)是三个不同的自然数。当然你也就不明白你错没错,错在哪里了。
        其次elim的【因为无穷大\(\displaystyle\lim_{n \to \infty}n\)不是有限集的基数\((\displaystyle\lim_{n \to \infty}n\notin A_k\)\((\forall k\in\mathbb{N}))\)】的说法是错误的。有限集的基数是可以生成\(\displaystyle\lim_{n \to \infty}n\)的,具体生成过程可参看余希元等著《初等代数研究》P4页定义1:有限集的基数叫做自然数;也可参看张峰陶然著《集合论基础教程》P83页冯\(\cdot\)诺依曼自然数生成法的解读。余希元、张峰他们研究的自然数体系都是由\(\phi\)这个特殊的有限集生成的。康托尔的幂集定理(即连续统假设)不也说明由基数为\(\aleph_0\)生成的自然数有\(2^{\aleph_0}\)个吗?elim,周民强《实变函数论》定义1.8与1.9是自洽的,你由周民强《实变函数论》定义1.8得不到\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)只能说明你没有弄懂〖有限集的基数是自然数〗的真正含意!所以你虽然作出了牵强的解释,但你仍没有说出个子午卯酉,所以你仍是畜生不如!
回复 支持 反对

使用道具 举报

发表于 2025-10-25 06:55 | 显示全部楼层

     对于〖试问elim,\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}2n\)谁大?!\(\displaystyle\lim_{n \to \infty}n\)与\(\displaystyle\lim_{n \to \infty}10^n\)谁大?!由单增集列\(\{A_n=\{m|m\le n\in\mathbb{N}\}\),得\(\mathbb{N}=\displaystyle\bigcup_{n=1}^{\infty}A_n=\)\(\{1,2,3,…,\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}\)\(\implies\)\(\displaystyle\lim_{n \to \infty}n\in\)\(\mathbb{N}\)\(\color{red}{错在哪里}?\)\(\color{red}{为什么是错的}?\)若elim说不出个子午卯酉,elim就是反数学,就是畜牲不如!〗
        elim对上面问题作出了如下回答:
     【 \(\{2n\}\)、\(\{10^n\}\)等都是自然数列\(\{n\}\)的子列.它们的极限都是\(Sup\mathbb{N}\)即分析中的\(+\infty\)..定义\(A_n=\{m|n<m\in\mathbb{N}\}\)\((n\in\mathbb{N})\),则\(\mathbb{N}= \displaystyle\bigcup_{n=1}^{\infty}A_n\ne\)\(\{1,2,3,…\)\(\displaystyle\lim_{n \to \infty}n\}\)因为无穷大\(\displaystyle\lim_{n \to \infty}n\)不是有限集的基数\((\displaystyle\lim_{n \to \infty}n\notin A_k\)\((\forall k\in\mathbb{N}))\)】
        然而,这个回答elim仍没有说出个子午卯酉,首先\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}10^n\)和\(\displaystyle\lim_{n \to \infty}n\)是可以比较大小的。因为\(\displaystyle\lim_{n \to \infty}\tfrac{2n}{n}=2\), \(\displaystyle\lim_{n \to \infty}\tfrac{10^n}{n}=\infty\),所以\(\displaystyle\lim_{n \to \infty}2n\)和\(\displaystyle\lim_{n \to \infty}n\)是同阶无穷大,\(\displaystyle\lim_{n \to \infty}10^n\)是\(\displaystyle\lim_{n \to \infty}n\)的高阶无穷大!elim对无穷大的认知还停留在3000多年印度人的对无穷大认知的程度上。所以你无法理解\(\displaystyle\lim_{n \to \infty}(n-1)\)、\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}(n+1)\)是三个不同的自然数。当然你也就不明白你错没错,错在哪里了。
        其次elim的【因为无穷大\(\displaystyle\lim_{n \to \infty}n\)不是有限集的基数\((\displaystyle\lim_{n \to \infty}n\notin A_k\)\((\forall k\in\mathbb{N}))\)】的说法是错误的。有限集的基数是可以生成\(\displaystyle\lim_{n \to \infty}n\)的,具体生成过程可参看余希元等著《初等代数研究》P4页定义1:有限集的基数叫做自然数;也可参看张峰陶然著《集合论基础教程》P83页冯\(\cdot\)诺依曼自然数生成法的解读。余希元、张峰他们研究的自然数体系都是由\(\phi\)这个特殊的有限集生成的。康托尔的幂集定理(即连续统假设)不也说明由基数为\(\aleph_0\)生成的自然数有\(2^{\aleph_0}\)个吗?elim,周民强《实变函数论》定义1.8与1.9是自洽的,你由周民强《实变函数论》定义1.8得不到\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)只能说明你没有弄懂〖有限集的基数是自然数〗的真正含意!所以你虽然作出了牵强的解释,但你仍没有说出个子午卯酉,所以你仍是畜生不如!
回复 支持 反对

使用道具 举报

发表于 2025-10-26 07:58 | 显示全部楼层

        elim,根据威尔斯特拉关于\(\infty=\{n|n>N_ε(=[\tfrac{1}{ε}]+1),\)\(N_ε∈\)\(\mathbb{N}\)。所以\(\displaystyle\lim_{n \to \infty}n\to\infty\)。故此,\(\displaystyle\lim_{n \to \infty}n\)\(\ne\)\(\infty\),这就是陶哲轩所说的自然数可\(\color{red}{趋向}\)于无穷大,但不能\(\color{red}{等于}\)无穷大!至于\(\displaystyle\lim_{n \to \infty}n\)是哪个有限集合的基数的问题,elim可参看康托尔实正整数生成法则及冯\(\cdot\)依曼自然数生成法则,他们都是以\(\phi\)这个特殊的有限集的基数来生成整个自然数集的。现行数学中,周民强的单调集列极限集定义是自洽的。施笃兹定理也是正确的。所以,你的【不存在自然数n使得\(\tfrac{1}{n}=0\)】是反现行数学的!
回复 支持 反对

使用道具 举报

发表于 2025-10-29 06:31 | 显示全部楼层

        elim,在现行数学中\(\infty=\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1),\)\(N_ε∈N\}\)。所以\(\displaystyle\lim_{n \to \infty}n\)\(\in N\)\((即\displaystyle\lim_{n \to \infty}n\)\(\to\infty)\)!但\(\displaystyle\lim_{n \to \infty}n\)\(\ne\)\(\infty\)!故此陶哲轩没有错,大错而特错的是民科领袖elim无视威尔斯特拉斯对\(\infty\)和趋向\(\infty\)的定义,自出心裁的定义出一套与现行数学根本不相容的歪理,方得到诸如【无穷交就是一种骤变】、【\(\displaystyle\lim_{n \to \infty}n\)\(=Sup\mathbb{N}\)】……等反现行数学的谬论。这种连最基础的数学基本概念,基本方法都要篡改一通的王八蛋,还有什么脸怼春氏可达!?
回复 支持 反对

使用道具 举报

发表于 2025-10-29 13:56 | 显示全部楼层

        elim,在现行数学中\(\infty=\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1),\)\(N_ε∈N\}\)。所以\(\displaystyle\lim_{n \to \infty}n\)\(\in N\)\((即\displaystyle\lim_{n \to \infty}n\)\(\to\infty)\)!但\(\displaystyle\lim_{n \to \infty}n\)\(\ne\)\(\infty\)!故此陶哲轩没有错,大错而特错的是民科领袖elim无视威尔斯特拉斯对\(\infty\)和趋向\(\infty\)的定义,自出心裁的定义出一套与现行数学根本不相容的歪理,方得到诸如【无穷交就是一种骤变】、【\(\displaystyle\lim_{n \to \infty}n\)\(=Sup\mathbb{N}\)】……等反现行数学的谬论。这种连最基础的数学基本概念,基本方法都要篡改一通的王八蛋,还有什么脸怼春氏可达!?
回复 支持 反对

使用道具 举报

发表于 2025-10-30 21:01 | 显示全部楼层

        elim于2025-10-30 13:38发表新主题《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》该主题的主帖认为【\(\displaystyle\lim_{n \to \infty}n=m\)\(\in\mathbb{N}\),则对n>M=m+1令\(n\to\infty\)得\(\displaystyle\lim_{n \to \infty}n<\)\(m+1=M\le\displaystyle\lim_{n \to \infty}n=m\),\(m+1\le m\)\(\implies m\notin\mathbb{N}\)\(\implies\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)】elim论述之余,一如既往地对春风晚霞发动攻击,【顽瞎目测蕴含顽瞎目测的否定,此乃嗜屎报应.】【滚驴白痴真身被验明,孬贼船漏不打一处来.】
        elim的这个主题及主贴既向我们充分地展示了elim反数学的丑恶嘴脸,也充分暴露了elim嗜屎如命,滚驴白痴的肮脏心理。同时更进一步展示了elim不懂数学论证、不懂自然数、不懂无穷数学白痴的事实。现在我们结合《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》这个主题重点讲讲什么是论证。
所谓证明是指〖从命题的题设出发,根据已知的定义(如自然数的定义)、公理(如皮亚诺公理)、定理(如自然数集是无限集定理),逐步推导出未知(即结论)的逻辑演译过程〗,所以要证明命题【\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)】,我们们必须从〖\(\lim n\in\mathbb{N}\)〗这个\(\color{red}{题设}\)条件出发,根据皮亚诺公理(犹其是皮亚诺公理第二条),去逻辑演译出\(\lim n\notin\mathbb{N}\)这个结论。所以,正确地演译应是〖若\(\lim n\in\mathbb{N}\)\(\implies\lim n+1\in\mathbb{N}\)(理论根据是皮亚诺公理第二条:每一个确定的自然数a,都有一个确定的后继数a'(=a+1),a'(=a+1)也是自然数.〗于是问题就转化成如\(m+1\)是不是自然数的问题。如果\(m+1\)是自然数(即皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)是否成立的问题),
        现在我们证明命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        注意:我们在此\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)的基础上亦可证明\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……是自然数!证明的合理性请参见康托尔《超穷数理论基础》P75页第7—8行.
Elim,由问题的一般(项)通过极限的手段探测无穷,这是数学上常规有效方法,这种方法应用于一切步及极限动算的始终。所以你反对目测,其实质就是反对现行数学行之有效地论证方法。也因为elim反对目测,所以elim才有\(\displaystyle\lim_{n \to \infty}n=Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=Max\mathbb{N}\)、……这样一些荒谬结论。
        elim纯粹数学是通过严谨的证明获得的,而不是靠耍流氓、耍无赖得到的。郑告民科领袖elim数学切忌撒谎,因为数学中没有戈陪尔效应,谎言千遍,仍是谎言!至此谁嗜吃屎,谁的【白痴真身被验明,孬贼船漏不打一处来】你固然不想承认,然网络诸友想必还是心中有数的!

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-11-8 05:32 , Processed in 0.078224 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表