数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 歌德三十年

[原创]奇合数定理、奇素数定理证明

[复制链接]
 楼主| 发表于 2011-4-26 22:25 | 显示全部楼层

[原创]奇合数定理、奇素数定理证明

回61楼:您好。欢迎光临。
您的解读不尽正确。奇合数并非就是两个奇数之乘积。两个以上(含两个)大于1的奇数之乘积必为奇合数。所有大于1的奇数不为奇合数则必为奇素数。
谢谢。
 楼主| 发表于 2011-4-28 21:50 | 显示全部楼层

[原创]奇合数定理、奇素数定理证明

回61楼:您好。欢迎光临。
您的解读不尽正确。奇合数并非就是两个奇数之乘积。两个以上(含两个)大于1的奇数之乘积必为奇合数。所有大于1的奇数不为奇合数则必为奇素数。
谢谢。
 楼主| 发表于 2011-4-30 16:59 | 显示全部楼层

[原创]奇合数定理、奇素数定理证明

我看不懂陈氏定理。陈的”1+2“与”1+1”风马牛不相及。不懂也罢,免得耗费生命。我就是因看不懂“1+2”才走上标新立异证哥猜之路的。

 楼主| 发表于 2011-5-1 17:35 | 显示全部楼层

[原创]奇合数定理、奇素数定理证明

各位网友:
有人说“数学归纳法是针对连续的自然数而言!”---说的没错。不过,数学归纳法原理定理中所说“ 2°假定n=k时命题成立 则n=k+1时命题也成立”---就是假定n等于某一自然数k时命题成立 则n=k+1时命题也成立---详见人民教育出版社1979年再版的张禾瑞 郝鈵新编《高等代数》上册第14页第13行文字。既然k是某一自然数,当然k就可以分流为---k=m∈CN+{2ij+i+j|i,j∈N+}和k=(2ij+i+j)∈{2ij+i+j|i,j∈N+}两种情况,并分别论证两种情况下n=k+1时命题都成立。所以说我的“马氏分流归纳法”不韪数学归纳法原理定理的规范。
将正整数集N+创新地分解为{2ij+i+j|i,j∈N+}和CN+{2ij+i+j|i,j∈N+}这两个不相交而互补的子集是“马氏分流归纳法”的理论基础。“马法”只是对经典数学归纳法的改造与创新,是数学归纳法的一个变种。她扩充了经典数学归纳法证题的功能。她在我的论文《哥德巴赫猜想真理性之证明》中得到成功的运用。
“马法”亦可应用于用经典法即可圆满证明的命题---不过那是“牛刀杀鸡”,是“脱了裤子放屁---白费了一道手续”罢了。请详见《马氏分流归纳法证题示例》一文。
诚请斧正。
 楼主| 发表于 2011-5-2 09:12 | 显示全部楼层

[原创]奇合数定理、奇素数定理证明

我看不懂陈氏定理。陈的”1+2“与”1+1”风马牛不相及。不懂也罢,免得耗费生命。我就是因看不懂“1+2”才走上标新立异证哥猜之路的。
同样,陈氏还魂亦会对马氏分流归纳法瞪眼瞧的。
 楼主| 发表于 2011-5-3 21:17 | 显示全部楼层

[原创]奇合数定理、奇素数定理证明

回贵阳陈启才:您好。欢迎光临。我《哥德巴赫猜想真理性之证明》一文采用创新的马氏分流归纳法,从理论上证明了“不小于6的偶数都可表二奇素数之和”的必然性---也就是从科学理论上回答了“m”存在的必然性。“m”既然在理论上存在,从实践论上讲就是“能够找到”或“可以找到”。理论上不存在的东西,在实践上无论如何都是找不到的---这就是我文的逻辑。至于如何才能找到具体的“m”,那是另一个范畴的问题---我文1°中也作出了范例:2(1+2)={1+2*1}素数+{3+2(1-1)}素数 2(4+2)={1+2*2}素数+{3+2(4-2)}素数 请您比照一一去作一一去验证吧。但愿您能找出个反例来!!!
务请先生注意:哥猜要的是理论上的成立证明,不是实际上的一一验证。
王元尚且对我文结舌瞪眼瞧,何况其徒子徒孙乎?
沉舟侧畔千帆过,病树前头万木春。历史会证明一切的。
 楼主| 发表于 2011-5-4 18:45 | 显示全部楼层

[原创]奇合数定理、奇素数定理证明

我看不懂陈氏定理。陈的”1+2“与”1+1”风马牛不相及。不懂也罢,免得耗费生命。我就是因看不懂“1+2”才走上标新立异证哥猜之路的。
同样,陈氏还魂亦会对马氏分流归纳法瞪眼瞧的。

 楼主| 发表于 2011-5-10 16:06 | 显示全部楼层

[原创]奇合数定理、奇素数定理证明

回LLZ2008:您好。请看以下我原文摘抄:
假设推论二: 2ij+i+j≠m+3q q∈N+{1+2(m+3q)}表大于9的素数
证 :
由假设推论一知{3+2(k-m)}={3+2((2ij+i+j)-m)}表大于3的素数,而{3+((m+3q)-m)}={3(1+2q)}表奇合数
故2ij+i+j≠m+3q,而{1+2(2ij+i+j)}={(2i+1)(2j+1)}表不小于9的奇合数,而由于2ij+i+j≠m+3q
∴{1+2(m+3q}不能表不小于9的奇合数 故{1+2(m+3q}只能表大于9的素数
证毕.
我上述原文就已经证明了“k=2ij+i+j时2ij+i+j≠m+3q即k=2ij+i+j≠m+3q”怎么可能还会出现“k=2ij+i+j=m+3q”的分流情况?
“您的第二次分流存在k=2ij+i+j=m+3q  q∈N+.这一流,不是我要加上,而是您剔除了“k=2ij+i+j=m+3q q∈N+”,不剔除这种情况,您的证明是不是就是错的?
我一般不随便质疑。”请问,我的原文存在您所质疑的那一流的文字吗?那所谓的一流您的帖子说的再明白不过了---“不是我(LLZ2008)要加上去的,而是您(马氏)剔除了”。我怎么可能剔除根本就不存在的文字呢?---这是什么道理?请不要强加于人!
请问,您有什么理论根据说“您的第二次分流存在k=2ij+i+j=m+3q  q∈N+.这一流”?是您自以为是的杜撰吧!?还是给我扣您的spz?
“我(LLZ2008)一般不随便质疑”---我(马氏)一般没这么耐心给您的质疑作答!
请您静下来“悟”一下,假如存在“k=2ij+ij=m+3q这一流”,是不是会导致出现“{3+2(k-m)}素数={3+2((2ij+i+j)-m}素数={3+2((m+3q)-m)}={3(1+2q)}奇合数”的矛盾?
发表于 2011-5-10 16:56 | 显示全部楼层

[原创]奇合数定理、奇素数定理证明

您的假设推论是不是归纳假设(即假设当n=k时结论成立作为前提)的推论,若是的话
k=2ij+ij=m+3q能剔除嘛?剔除了还是数学归纳法吗?
您如果觉得我的质疑不对,或者是,我还没有悟到您的高度,就当我没有提好了,即使是表决,也有保留意见的权利,何况您请我们质疑!
 楼主| 发表于 2011-6-4 15:51 | 显示全部楼层

[原创]奇合数定理、奇素数定理证明

回LLZ2008:您好。请看以下我原文摘抄:
假设推论二: 2ij+i+j≠m+3q q∈N+{1+2(m+3q)}表大于9的素数
证 :
由假设推论一知{3+2(k-m)}={3+2((2ij+i+j)-m)}表大于3的素数,而{3+((m+3q)-m)}={3(1+2q)}表奇合数
故2ij+i+j≠m+3q,而{1+2(2ij+i+j)}={(2i+1)(2j+1)}表不小于9的奇合数,而由于2ij+i+j≠m+3q
∴{1+2(m+3q}不能表不小于9的奇合数 故{1+2(m+3q}只能表大于9的素数
证毕.
我上述原文就已经证明了“k=2ij+i+j时2ij+i+j≠m+3q即k=2ij+i+j≠m+3q”怎么可能还会出现“k=2ij+i+j=m+3q”的分流情况?
“您的第二次分流存在k=2ij+i+j=m+3q  q∈N+.这一流,不是我要加上,而是您剔除了“k=2ij+i+j=m+3q q∈N+”,不剔除这种情况,您的证明是不是就是错的?
我一般不随便质疑。”请问,我的原文存在您所质疑的那一流的文字吗?那所谓的一流您的帖子说的再明白不过了---“不是我(LLZ2008)要加上去的,而是您(马氏)剔除了”。我怎么可能剔除根本就不存在的文字呢?---这是什么道理?请不要强加于人!
请问,您有什么理论根据说“您的第二次分流存在k=2ij+i+j=m+3q  q∈N+.这一流”?是您自以为是的杜撰吧!?还是给我扣您的spz?
“我(LLZ2008)一般不随便质疑”---我(马氏)一般没这么耐心给您的质疑作答!
请您静下来“悟”一下,假如存在“k=2ij+ij=m+3q这一流”,是不是会导致出现“{3+2(k-m)}素数={3+2((2ij+i+j)-m}素数={3+2((m+3q)-m)}={3(1+2q)}奇合数”的矛盾?

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-14 22:43 , Processed in 0.083974 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表