|
本帖最后由 愚工688 于 2020-12-31 15:40 编辑
2020年马上就要过去了!以20201231000为随机偶数,用连乘式来计算从开始的连续偶数的素对,看看计算值精度如何?
具体的计算值精度明年在验证了。
inf( 20201231000 )≈ 34500685.8 , jd ≈?,infS(m) = 25875514.33 , k(m)= 1.33333
inf( 20201231002 )≈ 27600548.6 , jd ≈?,infS(m) = 25875514.33 , k(m)= 1.06667
inf( 20201231004 )≈ 51751028.7 , jd ≈?,infS(m) = 25875514.34 , k(m)= 2
inf( 20201231006 )≈ 29314308.2 , jd ≈?,infS(m) = 25875514.34 , k(m)= 1.1329
inf( 20201231008 )≈ 31050617.2 , jd ≈?,infS(m) = 25875514.34 , k(m)= 1.2
inf( 20201231010 )≈ 70684331.9 , jd ≈?,infS(m) = 25875514.34 , k(m)= 2.73171
inf( 20201231012 )≈ 25881447.7 , jd ≈?,infS(m) = 25875514.35 , k(m)= 1.00023
inf( 20201231014 )≈ 26338533.0 , jd ≈?,infS(m) = 25875514.35 , k(m)= 1.01789
inf( 20201231016 )≈ 54978960.1 , jd ≈?,infS(m) = 25875514.35 , k(m)= 2.12475
inf( 20201231018 )≈ 25956036.7 , jd ≈?,infS(m) = 25875514.35 , k(m)= 1.00311
inf( 20201231020 )≈ 34500685.8 , jd ≈?,infS(m) = 25875514.36 , k(m)= 1.33333
inf( 20201231022 )≈ 63481261.9 , jd ≈?,infS(m) = 25875514.36 , k(m)= 2.45333
inf( 20201231024 )≈ 28269902.2 , jd ≈?,infS(m) = 25875514.36 , k(m)= 1.09253
inf( 20201231026 )≈ 25888394.2 , jd ≈?,infS(m) = 25875514.36 , k(m)= 1.0005
inf( 20201231028 )≈ 58019171.4 , jd ≈?,infS(m) = 25875514.37 , k(m)= 2.24224
time start =23:04:09 ,time end =23:09:23 ,time use =
连乘式计算式如下:
inf( 20201231000 ) = 1/(1+ .1535 )*( 20201231000 /2 -2)*p(m) ≈ 34500685.8
inf( 20201231002 ) = 1/(1+ .1535 )*( 20201231002 /2 -2)*p(m) ≈ 27600548.6
inf( 20201231004 ) = 1/(1+ .1535 )*( 20201231004 /2 -2)*p(m) ≈ 51751028.7
inf( 20201231006 ) = 1/(1+ .1535 )*( 20201231006 /2 -2)*p(m) ≈ 29314308.2
inf( 20201231008 ) = 1/(1+ .1535 )*( 20201231008 /2 -2)*p(m) ≈ 31050617.2
inf( 20201231010 ) = 1/(1+ .1535 )*( 20201231010 /2 -2)*p(m) ≈ 70684331.9
inf( 20201231012 ) = 1/(1+ .1535 )*( 20201231012 /2 -2)*p(m) ≈ 25881447.7
inf( 20201231014 ) = 1/(1+ .1535 )*( 20201231014 /2 -2)*p(m) ≈ 26338533
inf( 20201231016 ) = 1/(1+ .1535 )*( 20201231016 /2 -2)*p(m) ≈ 54978960.1
inf( 20201231018 ) = 1/(1+ .1535 )*( 20201231018 /2 -2)*p(m) ≈ 25956036.7
inf( 20201231020 ) = 1/(1+ .1535 )*( 20201231020 /2 -2)*p(m) ≈ 34500685.8
inf( 20201231022 ) = 1/(1+ .1535 )*( 20201231022 /2 -2)*p(m) ≈ 63481261.9
inf( 20201231024 ) = 1/(1+ .1535 )*( 20201231024 /2 -2)*p(m) ≈ 28269902.2
inf( 20201231026 ) = 1/(1+ .1535 )*( 20201231026 /2 -2)*p(m) ≈ 25888394.2
inf( 20201231028 ) = 1/(1+ .1535 )*( 20201231028 /2 -2)*p(m) ≈ 58019171.4
上面各个式中的 p(m) =0.5*Π[(p-2)/p ]*Π[(p1-1)/(p1-2)];就是所谓的素数连乘式。
其中0.5*Π[(p-2)/p ]——是表法数发生的最低概率,这里的p是≤√(M-2)的全部奇素数,Π表示该因子的连乘形式;
素因子系数 K(m)=Π[(p1-1)/(p1-2)]——这里的p1是指偶数M所含的≤√(M-2)的全部奇素数因子;
K(m)值表示素对数量在最低概率计算值上面的波动幅度;
各个偶数的连乘式中的p(m),不是相同的,而是依据各个偶数含有的奇素因子的不同而变化的。
下面先把这些偶数的素对真值附上,供网友先行验证。
G(20201231000) = 34520258
G(20201231002) = 27616992
G(20201231004) = 51782450
G(20201231006) = 29330769
G(20201231008) = 31068139
G(20201231010) = 70721062
G(20201231012) = 25899911
G(20201231014) = 26356901
G(20201231016) = 55012149
G(20201231018) = 25968328
G(20201231020) = 34520150
G(20201231022) = 63522362
G(20201231024) = 28286458
G(20201231026) = 25902501
G(20201231028) = 58054248
|
|