|
∏(1-\(1\over P\))=\(e^{-γ}\over{ln(x)}\)推出\({ln(x)}e^γ\)=∏\(P\over{P-1}\), 所以∏\(({P\over{P-1}})^n\)=\(({ln}(x)e^γ)^n\)=\({ln}^n(x)e^{nγ}\),而最密六生素数的系数为:∏\({P^5(P-6)}\over(P-1)^6\),当P≥7时,为此形式,对于素数2,\({2^5(2-1)}\over(2-1)^6\)=\({1\over 2}{2^6\over(2-1)^6}\),同样素数3,\({3^5(3-2)}\over(3-1)^6\)=\({1\over 3}{3^6\over(3-1)^6}\),同样素数5,\({5^5(5-4)}\over(5-1)^6\)=\({1\over 5}{5^6\over(5-1)^6}\),当素数P≥7后,\({P^5(P-6)}\over(P-1)^6\)=\({P^6\over(P-1)^6}{{P-6}\over P}\)=\(({P\over{P-1}})^6{(1-{6\over P})}\),把素数2,3,5的放进去:\(1\over {30}\)∏\(({P\over{P-1}})^6{(1-{6\over P_i})}\),\(P_i\)≥7. P≥2. |
|