|
根据周民强《实变承数论》P9页定义1.8〖 设\(\{A_k\}\)是一个集合列,若\(A_1\supset A_2\supset A_3\supset…\),则称此集合列为递减集合列,此时我们称其交集定义1.8 设\(\{A_k\}\)是一个集合列,若\(A_1\supset A_2\supset A_3\supset…\),则称此集合列为递减集合列,此时我们称其交集\(\displaystyle\bigcap_{k=1}^∞A_k\)为集合列\(\{A_k\}\)的\(\color{red}{极限集}\),记为\(\displaystyle\lim_{k→∞} A_k\);若\(A_1\subset A_2\subset A_3\subset…\),则称此集合列为递增集合列,此时我们称其并集\(\displaystyle\bigcup_{k=1}^∞A_k\)为集合列\(\{A_k\}\)的(\color{red}{极限集}\),记为\(\displaystyle\lim_{k→∞} A_k\)。\(\displaystyle\bigcup_{k=1}^∞A_k\)为〗
因此对于elim所给单调递减\(\{A_k=\{m|k<m\in N\}}\)的极限集为\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3…\}\}集合列\(\{A_k\}\)的\(\color{red}{极限集}\),记为\(\displaystyle\lim_{k→∞} A_k\)。〗对于elim所给单调递减\(\{A_k=\{m|k<m\in N\}\)的极限集为\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3…\}\)式中趋向于无穷大的n由\(\displaystyle\bigcap_{k=1}^∞\)逻辑确定,根据皮亚诺公理第二条,极限集\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3…\}\)中每个数都是逻辑确定的。所以\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3…\}≠\phi\)。
​至于【对于每个 m∈N,\(m∈N_∞=\displaystyle\bigcap_{n=1}^∞ A_n\)等价于
\(m∈A_n\)对每个n成立。这导致\( m∈A_m\)的矛盾.所以任何 m∈N都不是\(N_∞\)的元素】简直是胡说八道!①【对于每个 m∈N,\(m∈N_∞=\displaystyle\bigcap_{n=1}^∞ A_n\)】表述不清不楚容易产生歧义。如有限自然数都有n∈N,但\(n\notin A_∞\);②若\(m∈A_n且m∈N),则在\(A_∞\)存在自然数α,使m=α,这时也只有\(A_∞\)中大于α的数属于\(A_m\)即\(A_∞\)中只有大于m的自然数属于属于\(A_:m\)。所以\(\color{red}{不会有}\)【\(m∈A_n\)对每个n成立】的情形。所以【对于每个 m∈N,\(m∈N_∞=\displaystyle\bigcap_{n=1}^∞ A_n\)】与【\(m∈A_n\)对每个n成立】并不等价。因此也不会产生【\( m∈A_m\)的矛盾】.更不会出现【m∈N都不是\(N_∞\)的元素】的可能!因此elim的【\(N_∞=\phi\)】是伪命题!elim先生,现行数学是完备的数学体系,篡改现行数学基础证得的结果一定是荒谬的。 |
|