数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\color{red}{\textbf{ 瞎目测}\color{navy}{\textbf{源起}}\textbf{蠢可达}}\)

[复制链接]
发表于 2025-8-16 16:39 | 显示全部楼层

        根据Weierstrass数列极限的\((\varepsilon—N)\)定义:\(\forall\varepsilon>0,\exists\)\( N(=[\tfrac{1}{\varepsilon}]+1)\)\(\in\mathbb{N}\),当n>N时,恒有\(| a_n-a |<\varepsilon\),\(\iff\)\(\displaystyle\lim_{n \to \infty}a_n=a\)中的限制性短语\(\color{red}{\forall\varepsilon>0,\exists N(=[\tfrac{1}{\varepsilon}]+1)\in\mathbb{N}}\)知\(\mathbb{N}_{\infty}=\{n|n> N(=[\tfrac{1}{\varepsilon}]+1)\ne\phi\),且\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
回复 支持 反对

使用道具 举报

发表于 2025-8-17 07:30 | 显示全部楼层

        根据Weierstrass数列极限的\((\varepsilon—N)\)定义:\(\forall\varepsilon>0,\exists\)\( N(=[\tfrac{1}{\varepsilon}]+1)\)\(\in\mathbb{N}\),当n>N时,恒有\(| a_n-a |<\varepsilon\),\(\iff\)\(\displaystyle\lim_{n \to \infty}a_n=a\)中的限制性短语\(\color{red}{\forall\varepsilon>0,\exists N(=[\tfrac{1}{\varepsilon}]+1)\in\mathbb{N}}\)知\(\mathbb{N}_{\infty}=\{n|n> N(=[\tfrac{1}{\varepsilon}]+1)\ne\phi\),且\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
回复 支持 反对

使用道具 举报

发表于 2025-8-17 10:01 | 显示全部楼层

        根据Weierstrass数列极限的\((\varepsilon—N)\)定义:\(\forall\varepsilon>0,\exists\)\( N(=[\tfrac{1}{\varepsilon}]+1)\)\(\in\mathbb{N}\),当n>N时,恒有\(| a_n-a |<\varepsilon\),\(\iff\)\(\displaystyle\lim_{n \to \infty}a_n=a\)中的限制性短语\(\color{red}{\forall\varepsilon>0,\exists N(=[\tfrac{1}{\varepsilon}]+1)\in\mathbb{N}}\)知\(\mathbb{N}_{\infty}=\{n|n> N(=[\tfrac{1}{\varepsilon}]+1)\ne\phi\),且\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
回复 支持 反对

使用道具 举报

发表于 2025-8-17 10:08 | 显示全部楼层

elim好了不起哟,既精通集合论,又精通自然数理论!就是不知道什么是无穷?什么叫趋向无穷?什么是无穷数?什么是超穷数?就是不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!就是不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!就是不知道你的“臭便”之法挂一个漏万的荒谬性。像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?其实你对自然数的认知不如小学四年级的学生,你对集合论的认识当然不及高中一年级的学生了。像你这样什么都不知道的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出耒显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-8-17 10:28 | 显示全部楼层

elim真了不起,你连什么是自然数?什么是自然数集?什么是无穷?什么是趋向无穷都一概不知道,连皮亚诺公理,康托尔正整数生成法则都不用。居然也能证得【自然数皆有限数】,\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)?真是不愧是民科领袖!你把“目中无人,死不要脸”的致胜秘诀发扬到了极致。你还好意思拿那些被批臭、批烂的宿帖拿来显摆,拿来胡搅蛮缠。似此流氓无赖,真他娘的羞人!
回复 支持 反对

使用道具 举报

发表于 2025-8-17 10:33 | 显示全部楼层

elim真了不起,你连什么是自然数?什么是自然数集?什么是无穷?什么是趋向无穷都一概不知道,连皮亚诺公理,康托尔正整数生成法则都不用。居然也能证得【自然数皆有限数】,\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)?真是不愧是民科领袖!你把“目中无人,死不要脸”的致胜秘诀发扬到了极致。你还好意思拿那些被批臭、批烂的宿帖拿来显摆,拿来胡搅蛮缠。似此流氓无赖,真他娘的羞人!
回复 支持 反对

使用道具 举报

发表于 2025-8-17 10:36 | 显示全部楼层

elim真了不起,你连什么是自然数?什么是自然数集?什么是无穷?什么是趋向无穷都一概不知道,连皮亚诺公理,康托尔正整数生成法则都不用。居然也能证得【自然数皆有限数】,\(v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)?真是不愧是民科领袖!你把“目中无人,死不要脸”的致胜秘诀发扬到了极致。你还好意思拿那些被批臭、批烂的宿帖拿来显摆,拿来胡搅蛮缠。似此流氓无赖,真他娘的羞人!
回复 支持 反对

使用道具 举报

发表于 2025-8-17 11:08 | 显示全部楼层

elim好了不起哟,既精通集合论,又精通自然数理论!就是不知道什么是无穷?什么叫趋向无穷?什么是无穷数?什么是超穷数?就是不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!就是不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!就是不知道你的“臭便”之法挂一个漏万的荒谬性。像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?其实你对自然数的认知不如小学四年级的学生,你对集合论的认识当然不及高中一年级的学生了。像你这样什么都不知道的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出耒显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-8-17 12:55 | 显示全部楼层

        elim你根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是阜调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-8-17 17:04 | 显示全部楼层

        elim你根本不知道什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?就根本不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!你根本不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!你根本不知道你的“臭便”之法挂一漏万的荒谬性。像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)、\(\mathbb{N}_∞≠\phi\)这是数学界的共识.两年来你反对的不是春风晚霞,你反对的是威尔斯特拉斯的极限定义;你反对的是康托尔非负整数理论;你反对的皮亚诺公理体系;你反对的是阜调极列集限集定义;……像你这样什么都反对的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出来显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 22:10 , Processed in 0.085278 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表