|

楼主 |
发表于 2019-1-23 21:01
|
显示全部楼层
本帖最后由 愚工688 于 2019-1-23 13:03 编辑
在使用 Xi(M)=t2*c1*M/(logM)^2 计算时是不考虑偶是含有的素因子的,因为拉曼扭扬系数中已经包含了素因子形成的波动系数;
在使用连乘式计算时,则根据偶数含有的素因子由程序自动作不同的处理。相同的素因子的作用之计算一次,不重复。
例:
G(969969000 )= 7261877
inf( 969969000 )≈ 7238038.6 , Δ≈-0.003283,infS(m) = 1652237.8 , k(m)= 4.38075
G(969969002 )= 1657012
inf( 969969002 )≈ 1653397.3 , Δ≈-0.002182,infS(m) = 1652237.81 , k(m)= 1.0007
G(969969004 )= 1659918
inf( 969969004 )≈ 1654968.8 , Δ≈-0.002982,infS(m) = 1652237.81 , k(m)= 1.00165
G(969969006 )= 3380348
inf( 969969006 )≈ 3369269.3 , Δ≈-0.003277,infS(m) = 1652237.81 , k(m)= 2.03922
G(969969008 )= 1657950
inf( 969969008 )≈ 1652237.8 , Δ≈-0.003445,infS(m) = 1652237.82 , k(m)= 1
G(969969010 )= 2210871
inf( 969969010 )≈ 2203436.5 , Δ≈-0.003363,infS(m) = 1652237.82 , k(m)= 1.33361
G(969969012 )= 3314349
inf( 969969012 )≈ 3304475.7 , Δ≈-0.002979,infS(m) = 1652237.82 , k(m)= 2
time start =20:26:53time end =20:27:16 time use = 23秒
计算式:
inf( 969969000 ) = 1/(1+ .1406 )*( 969969000 /2 -2)*p(m) ≈ 7238038.6
inf( 969969002 ) = 1/(1+ .1406 )*( 969969002 /2 -2)*p(m) ≈ 1653397.3
inf( 969969004 ) = 1/(1+ .1406 )*( 969969004 /2 -2)*p(m) ≈ 1654968.8
inf( 969969006 ) = 1/(1+ .1406 )*( 969969006 /2 -2)*p(m) ≈ 3369269.3
inf( 969969008 ) = 1/(1+ .1406 )*( 969969008 /2 -2)*p(m) ≈ 1652237.8
inf( 969969010 ) = 1/(1+ .1406 )*( 969969010 /2 -2)*p(m) ≈ 2203436.5
inf( 969969012 ) = 1/(1+ .1406 )*( 969969012 /2 -2)*p(m) ≈ 3304475.7
大偶数采用连乘式与误差修正式相乘。
而采用对数式 Xi(M)=t2*c1*M/(logM)^2 计算,计算速度则比素数连乘式略微快一点,也不需要考虑如何分类:
S( 969969000 ) = ;Xi(M)≈ 7263462.26 δxi(M)≈0.000218 ( t2= 1.108719 )
S( 969969002 ) = ;Xi(M)≈ 1659204.8 δxi(M)≈ 0.001323 ( t2= 1.108719 )
S( 969969004 ) = ;Xi(M)≈ 1660781.89 δxi(M)≈0.000520 ( t2= 1.108719 )
S( 969969006 ) = ;Xi(M)≈ 3381103.98 δxi(M)≈0.000224 ( t2= 1.108719 )
S( 969969008 ) = ;Xi(M)≈ 1658041.34 δxi(M)≈0.000055 ( t2= 1.108719 )
S( 969969010 ) = ;Xi(M)≈ 2211176.18 δxi(M)≈0.000138 ( t2= 1.108719 )
S( 969969012 ) = ;Xi(M)≈ 3316082.69 δxi(M)≈0.000523 ( t2= 1.108719 )
time start =20:47:15, time end =20:47:30,time use = 15 秒
|
|