数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: jzkyllcjl

0.999……能等于1吗?

[复制链接]
 楼主| 发表于 2011-8-13 20:02 | 显示全部楼层

0.999……能等于1吗?

千层讨论的结论
①虽然现行教科书中有等式0.333……=1/3,但是这个等式违背了1除3时永远除不尽、永远有余数的事实。从现行数学理论中无法找出这个等式成立的正当理由。这个等式的代数证法有问题(参看《实数理论中的问题及其改革》1.2节);这个等式的无穷级数说明不恰当;这个的实无穷解释也不恰当。
②在无穷的是无有穷尽、无穷大是变数而不是常数的意义下,无尽小数0.333……中3的个数是不断增加着的,所以它不是定数。
③从应用上讲,人们可以从无穷数列0.3,0.33,0.333,……中找到1/3的准确到任意小误差界的足够准近似表达数字,但绝对准表达式0.333……=1/3无法得到应用(因为无穷多个3无法写到)。此外,无穷数列0.3,0.33,0.333,……的极限是1/3。建立数学理论的目的是实践中的应用。所以从应用上讲,应当说:无尽小数0.333……是无穷数列0.3,0.33,0.333,……的简写。在这个意义下,无尽小数0.333……是定义在自然数集合上的变数,而不是常数。此时,还成立表达式:1/3~0.333……;与表达式1/3=lim0.333…….
 楼主| 发表于 2011-8-13 20:13 | 显示全部楼层

0.999……能等于1吗?

下面引用由小雪2011/08/13 02:39pm 发表的内容:
0.9999999999999999..............循环数定数,没有必要怀疑它
昌建:已经证明了,在直角三角形中,0.9999999999999999..............循环数定数
无尽循环小数0.9999999999999999..............是无穷数列0.9,0.99,0.999,……的简写,它的极限是1,但拓本身不是1。
 楼主| 发表于 2011-8-14 07:52 | 显示全部楼层

0.999……能等于1吗?

下面引用由elimqiu2011/08/13 02:35pm 发表的内容:
jzkyllcjl 是返祖现象的例子,他的极限是爬行类,但他本身不是爬行类。
不是返祖,而是追求与探讨真理.
 楼主| 发表于 2011-8-14 08:16 | 显示全部楼层

0.999……能等于1吗?

“|0.99999999...的真实意义是0.9,0.99,0.999,…的缩写”这句话给出了0.99999999...的实际用处:第一,0.99可以近似表示1;第二,0.9,0.99,0.999,…的极限是1.
发表于 2011-8-14 08:18 | 显示全部楼层

0.999……能等于1吗?

jzkyllcjl  


等级: 精灵使
信息:  
威望: 0 积分: 3565
现金: 42067 金币
存款: 没开户
贷款: 没贷款
来自: 保密 
发帖: 3403 篇
精华: 0 篇
资料:  
在线: 513 时 17 分 36 秒
注册: 2008/07/08 08:01pm
造访: 2011/08/14 07:14am
  消息 查看 搜索 好友 复制 引用 回复 只看我  [第 29 楼]

  又有一篇四星论文,来信如下:
尊敬的 曹俊云: 您在本站发表的编号为201101-1119,学科为,标题为全能近似分析下的瞬时速度微分导数概念 的文章已给出同行评审,结果如下:综合评价为4 星,同行评议内容:在这篇论文里,作者在数学分析的教学中,发现了瞬间速度的物理意义不好解释.通过使用全能近似导数,得到了函数取极值的充分必要条件;通过使用近似导数,解决了瞬时速度的物理意义,并解决了函数微分的作用。作者肯动脑筋,这一想法在导数的实际应用中具有一定的价值,建立修改。修改:1.很多地方没有标点符号,一句话完了要有符号;2. 语言还要检查,应更通顺些。 此邮件为自动发送,无需回复。 ——中国科技论文在线
  




本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2011-8-14 08:19 | 显示全部楼层

0.999……能等于1吗?

下面引用由jzkyllcjl2011/08/14 07:52am 发表的内容:
不是返祖,而是追求与探讨真理.
【鉴定】和【评估】结论是:“无知者无畏”式的“蠢货”(jzkyllcjl)
“蠢货”(jzkyllcjl)你的东西,是与别人的不兼容的。那么什么【真理】,与别人无关的
发表于 2011-8-14 08:19 | 显示全部楼层

0.999……能等于1吗?

下面引用由jzkyllcjl2011/08/13 08:13pm 发表的内容:
无尽循环小数0.9999999999999999..............是无穷数列0.9,0.99,0.999,……的
下面引用由elimqiu2011/08/13 02:35pm 发表的内容:
jzkyllcjl 是返祖现象的例子,他的极限是爬行类,但他本身不是爬行类。
下面引用由jzkyllcjl2011/08/14 07:52am 发表的内容:
不是返祖,而是追求与探讨真理.
因为无穷是无有穷尽,所以0.99999999...的真实意义是0.9,0.99,0.999,…的缩写,而jzkyllcjl是返祖到爬行类的缩写。
发表于 2011-8-14 09:05 | 显示全部楼层

0.999……能等于1吗?

循环数没有极限存在.循环数在数轴上是定数
1>0.999999.............大多少,没有答案.因为循环是无限的
1>0.999999.............没有疑问的
1>0.999999.............×0.999999.............
0.999999.............>0.999999.............×0.999999.............

发表于 2011-8-14 09:46 | 显示全部楼层

0.999……能等于1吗?

不用怀疑,昌建和小雪的关系有点像 1 和 0.999...的关系:货色相当。
发表于 2011-8-14 14:26 | 显示全部楼层

0.999……能等于1吗?

正多边形周长固定,正多边形边数无限变多,此时正多边形接近形成圆.没有圆的存在.
无尽循环小数0.9999999999999999..............是无穷数列0.9,0.99,0.999,……的简写,它的极限是1,但拓本身不是1,这句话错误的
无尽循环小数0.9999999999999999..............它的极限小于1
例1:1÷3=0.3333333333333333..............
0.99999999999...........>0.33333333333.........×0.333333333333............
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-17 05:28 , Processed in 0.125540 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表