数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Large\underset{m\to\infty}{\lim}(m+j)\color{red}{\textbf{ 戏孬种}}\)

[复制链接]
发表于 2024-10-2 08:49 | 显示全部楼层
elim 发表于 2024-10-2 08:48
孬种楼上的帖子表明它已理屈词穷。
对\(n\in\mathbb{N},\) 令 \(A_n=\{m\in\mathbb{N}: m>n\},\;N_\infty= ...

再咋骚整,也难掩“臭便”之臭!
回复 支持 反对

使用道具 举报

发表于 2024-10-2 08:56 | 显示全部楼层
再咋骚整,也难掩“臭便”之臭!
回复 支持 反对

使用道具 举报

发表于 2024-10-2 09:00 | 显示全部楼层
再咋骚整,也难掩“臭便”之臭!
回复 支持 反对

使用道具 举报

发表于 2024-10-2 19:13 | 显示全部楼层
elim 发表于 2024-10-2 09:07
孬种楼上的帖子表明它已理屈词穷。
对\(n\in\mathbb{N},\) 令 \(A_n=\{m\in\mathbb{N}: m>n\},\;N_\infty= ...


       elim的数学帖文,涉及数学学术信息较少,耍赖撒泼的流氓语言偏多。下边仅给出elim涉及数学信息的全部,剩余的东西留待elim自酌。elim认为:【对n∈\(\mathbb{N}\), 令 \(A_n=\{m∈\mathbb{N}:m>n\},N_∞=\displaystyle\bigcap_{n=1}^∞ A_n\). 记 ω 为严格增序列\(\{n\}\)的极限,则 ω>n(\(\forall n∈\mathbb{N})\). 若\(ω∈\mathbb{N},则ω=max\mathbb{N}\)。
但\(\mathbb{N}\) 没有最大元,故\(ω\notin \mathbb{N}\)孬种的\(\displaystyle\bigcap_{n=1}^∞  A_n=\)\(\displaystyle\lim_{n→∞} A_n=\{ω+1,ω+2,…,\}\) 反数学. 因为上式左边是N的子集,而右边与N不交。故孬种的极限集计算超出极限集的取值范围,反极限集定义.】
       elim的这段陈述,透露出以下几个方面的问题1)、elim根本不知道单调集列极限集的定义,以及如何求单调集列的极限集。(2)、elim根本不知道集合论中超限数(或称超穷数)为何物,更不知道超限数的生成法则。
       本帖根据elim所给集列\(\{A_n=\{m∈\mathbb{N}:m>n\}\}\)着重谈谈这两个方面的问题:
       (1)、什么是单调集列的极限集,如何计算单调集列的极限集?
根据elim所给集列\(\{A_n=\{m∈\mathbb{N}:m>n\}\}\)我们易知:\(A_1=\{2,3,4,…\}\);\(A_2=\{3,4,5…\}\);……\(A_k=\{k+1,k+2,k+3,…\}\);…且\(A_1\supset A_2\)\(\supset A_3\supset…\)\(\supset A_k\supset…\)。根据现行教科书(如周民强《实变函数论》)单调集列极限集定义:\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3…\}\)。
       (2)、什么是超限数(或超穷数),如何理解超限数(或超穷数)?
超限数(或超穷数)产生的逻辑依据是皮亚诺万理(Peano axioms)或个Cantor 正整数生成法则。Cantor有穷基数的无穷序列:1,2,3,…\(\nu\),ω+1,ω+2,…中没有∞,也没有\(\displaystyle\lim_{n→∞}\)这样的符号。Cantor 《超穷数理论基础》一书称“数\(\nu\)既表示把一个个单位放上去的确切计数,又表示它们所汇成的整体”(参见cantor《超穷数理论基础》P42页19~20行)“ω表示(I)的整体和(I)中的数之间的一种相继次序”(参见Cantor《超穷数理论基础》P43页3~4行)。并且ω没有直接前趋,ω和∞的区別主要在于“ω表示适当的无穷,而∞表示不适当的无穷”(参见Cantor《超穷数理论基础》P42页第14~15行)。所以\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3…\}=\)\(\{ω+1,ω+2,ω+3,…\}\)是合法的。是现行教科书的,而不是“孬种的”!而【记 ω 为严格增序列\(\{n\}\)的极限,则 ω>n(\(\forall n∈\mathbb{N})\). 若\(ω∈\mathbb{N},则ω=max\mathbb{N}\)。但\(\mathbb{N}\) 没有最大元,故\(ω\notin \mathbb{N}\)】则是elim生造的、无现行教科书理论支撑的私生子,其论述也是无效的。
       elim是强悍的论辩家,但不是很好的教师。你开讲座,搞科普如果只是为了打压春风晚霞,其实大可不必!你就把我踩在脚底,打入十八层地狱也不能彰显你的伟大!如果想用【无穷交就是一种骤变】误导初学者那就太无师德,太不道德了!
回复 支持 反对

使用道具 举报

发表于 2024-10-3 07:42 | 显示全部楼层

       elim的数学帖文,涉及数学学术信息较少,耍赖撒泼的流氓语言偏多。下边仅给出elim涉及数学信息的全部,剩余的东西留待elim自酌。elim认为:【对n∈\(\mathbb{N}\), 令 \(A_n=\{m∈\mathbb{N}:m>n\},N_∞=\displaystyle\bigcap_{n=1}^∞ A_n\). 记 ω 为严格增序列\(\{n\}\)的极限,则 ω>n(\(\forall n∈\mathbb{N})\). 若\(ω∈\mathbb{N},则ω=max\mathbb{N}\)。但\(\mathbb{N}\) 没有最大元,故\(ω\notin \mathbb{N}\)孬种的\(\displaystyle\bigcap_{n=1}^∞  A_n=\)\(\displaystyle\lim_{n→∞} A_n=\{ω+1,ω+2,…,\}\) 反数学. 因为上式左边是N的子集,而右边与N不交。故孬种的极限集计算超出极限集的取值范围,反极限集定义.】
       elim的这段陈述,透露出以下几个方面的问题:(1)、elim根本不知道单调集列极限集的定义,以及如何求单调集列的极限集。(2)、elim根本不知道集合论中超限数(或称超穷数)为何物,更不知道超限数的生成法则。\(\color{red}{(3)、elim不能正确认识n∈\mathbb{N}与A_n\subset\Omega}\)。
       本帖根据elim所给集列\(\{A_n=\{m∈\mathbb{N}:m>n\}\}\)着重谈谈这两个方面的问题:
       (1)、什么是单调集列的极限集,如何计算单调集列的极限集?
       根据elim所给集列\(\{A_n=\{m∈\mathbb{N}:m>n\}\}\)我们易知:\(A_1=\{2,3,4,…\}\);\(A_2=\{3,4,5…\}\);……\(A_k=\{k+1,k+2,k+3,…\}\);…且\(A_1\supset A_2\)\(\supset A_3\supset…\)\(\supset A_k\supset…\)。根据现行教科书(如周民强《实变函数论》)单调集列极限集定义:\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3…\}\)。
       (2)、什么是超限数(或超穷数),如何理解超限数(或超穷数)?
       超限数(或超穷数)产生的逻辑依据是皮亚诺万理(Peano axioms)或个Cantor 正整数生成法则。Cantor有穷基数的无穷序列:1,2,3,…\(\nu\),ω+1,ω+2,…中没有∞,也没有\(\displaystyle\lim_{n→∞}\)这样的符号。Cantor 《超穷数理论基础》一书称“数\(\nu\)既表示把一个个单位放上去的确切计数,又表示它们所汇成的整体”(参见cantor《超穷数理论基础》P42页19~20行)“ω表示(I)的整体和(I)中的数之间的一种相继次序”(参见Cantor《超穷数理论基础》P43页3~4行)。并且ω没有直接前趋,ω和∞的区別主要在于“ω表示适当的无穷,而∞表示不适当的无穷”(参见Cantor《超穷数理论基础》P42页第14~15行)。所以\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3…\}=\)\(\{ω+1,ω+2,ω+3,…\}\)是合法的。是现行教科书的,而不是“孬种的”!而【记 ω 为严格增序列\(\{n\}\)的极限,则 ω>n(\(\forall n∈\mathbb{N})\). 若\(ω∈\mathbb{N},则ω=max\mathbb{N}\)。但\(\mathbb{N}\) 没有最大元,故\(ω\notin \mathbb{N}\)】则是elim生造的、无现行教科书理论支撑的私生子,其论述也是无效的。
       (3)、elim不能正确认识n∈\(\mathbb{N}\)与\(A_n\subset\Omega)\)。
       elin的认为【\(\displaystyle\bigcap_{n=1}^∞  A_n=\)\(\displaystyle\lim_{n→∞} A_n=\{ω+1,ω+2,…,\}\) 反数学. 因为上式左边是N的子集,而右边与N不交】是反数学的。由于(3)、elim不能正确认识n∈\(\mathbb{N}\)与\(A_n\subset\Omega)\)关系,elim才有\(\forall m∈\mathbb{N},恒有m\notin A_m\).由m的任意性知\(A_∞=\phi\)的荒谬谓词逻辑演释,从而导致【无穷交就是一种骤变】的荒唐结果。elim既然声称自己精通集合论,在论坛中作科普、办讲座,你为什么就不根据教科书介绍的集合论基础知识去证明一下【无穷交】会不会产生【骤变】呢?
       elim是强悍的论辩家,但不是很好的教师。你开讲座,搞科普如果只是为了打压春风晚霞,其实大可不必篡改现行的基础理论!你就把我踩在脚底,打入十八层地狱也不能彰显你的伟大!如果想用【无穷交就是一种骤变】误导初学者那就太无师德,太不道德了!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-10-3 11:23 | 显示全部楼层
孬种"再咋骚整,也难掩“臭便”之臭!"的帖子表明它已理屈词穷。
被指出后就有了其白痴极限集计算合法的烂贴。尽洪荒之力恶补
集论无果的,都觉得教科书,他人帖子学术信息太少而非其太蠢.
这就叫人太蠢,种太孬
一般收敛集列\(\{A_n\}\)的极限集是 \(\displaystyle\lim_{n\to\infty} A_n = \bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k\subseteq\bigcup_{n=1}^\infty A_n\)\(\\\)
当\(\{A_n\}\)单调降时便有\(\displaystyle\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k=\bigcap_{n=1}^\infty A_n\subseteq\bigcup_{n=1}^\infty A_n\)
对\(n\in\mathbb{N},\) 令 \(A_n=\{m\in\mathbb{N}: m>n\},\;N_\infty=\displaystyle\bigcap_{n=1}^\infty A_n\),
据上述论说,\(N_\infty=\displaystyle\bigcap_{n=1}^\infty A_n =\lim_{n\to\infty}A_n\)是自然数的子集。
记 \(\omega\) 为严格增序列\(\{n\}\) 的极限\(\displaystyle\lim_{n\to\infty} n\),则 \(\omega = \sup\mathbb{N}\).
若 \(\omega\in\mathbb{N},\) 则\(\omega=\max\mathbb{N}\)。但\(\mathbb{N}\) 没有最大元,故\(\color{red}{\omega\not\in\mathbb{N}}\)

故孬种的计算 \(\displaystyle\bigcap_{n=1}^\infty A_n=\lim_{n\to\infty} A_n=\{\omega+1,\omega+2,\ldots\}\) 反数学:
因为上式左边是\(\mathbb{N}\)的子集,而右边的每个成员都在\(\mathbb{N}\) 之外。
孬种的计算据它自己声称是合法的,但根据极限集定义,它离题万里,
春氏计算反集论. 孬种一年来始终不敢面对其极限集白痴算法的荒谬,

孬种作孬千头万绪,归根结底人太蠢种太孬
^
回复 支持 反对

使用道具 举报

发表于 2024-10-3 12:41 | 显示全部楼层

       elim的数学帖文,涉及数学学术信息较少,耍赖撒泼的流氓语言偏多。下边仅给出elim涉及数学信息的全部,剩余的东西留待elim自酌。elim认为:【对n∈\(\mathbb{N}\), 令 \(A_n=\{m∈\mathbb{N}:m>n\},N_∞=\displaystyle\bigcap_{n=1}^∞ A_n\). 记 ω 为严格增序列\(\{n\}\)的极限,则 ω>n(\(\forall n∈\mathbb{N})\). 若\(ω∈\mathbb{N},则ω=max\mathbb{N}\)。但\(\mathbb{N}\) 没有最大元,故\(ω\notin \mathbb{N}\)孬种的\(\displaystyle\bigcap_{n=1}^∞  A_n=\)\(\displaystyle\lim_{n→∞} A_n=\{ω+1,ω+2,…,\}\) 反数学. 因为上式左边是N的子集,而右边与N不交。故孬种的极限集计算超出极限集的取值范围,反极限集定义.】
       elim的这段陈述,透露出以下几个方面的问题:(1)、elim根本不知道单调集列极限集的定义,以及如何求单调集列的极限集。(2)、elim根本不知道集合论中超限数(或称超穷数)为何物,更不知道超限数的生成法则。\(\color{red}{(3)、elim不能正确认识n∈\mathbb{N}与A_n\subset\Omega}\)。
       本帖根据elim所给集列\(\{A_n=\{m∈\mathbb{N}:m>n\}\}\)着重谈谈这两个方面的问题:
       (1)、什么是单调集列的极限集,如何计算单调集列的极限集?
       根据elim所给集列\(\{A_n=\{m∈\mathbb{N}:m>n\}\}\)我们易知:\(A_1=\{2,3,4,…\}\);\(A_2=\{3,4,5…\}\);……\(A_k=\{k+1,k+2,k+3,…\}\);…且\(A_1\supset A_2\)\(\supset A_3\supset…\)\(\supset A_k\supset…\)。根据现行教科书(如周民强《实变函数论》)单调集列极限集定义:\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\)。
       (2)、什么是超限数(或超穷数),如何理解超限数(或超穷数)?
       超限数(或超穷数)产生的逻辑依据是皮亚诺万理(Peano axioms)或个Cantor 正整数生成法则。Cantor有穷基数的无穷序列:1,2,3,…\(\nu\),ω+1,ω+2,…中没有∞,也没有\(\displaystyle\lim_{n→∞}\)这样的符号。Cantor 《超穷数理论基础》一书称“数\(\nu\)既表示把一个个单位放上去的确切计数,又表示它们所汇成的整体”(参见cantor《超穷数理论基础》P42页19~20行)“ω表示(I)的整体和(I)中的数之间的一种相继次序”(参见Cantor《超穷数理论基础》P43页3~4行)。并且ω没有直接前趋,ω和∞的区別主要在于“ω表示适当的无穷,而∞表示不适当的无穷”(参见Cantor《超穷数理论基础》P42页第14~15行)。所以\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…\}=\)\(\{ω+1,ω+2,…\}\)是合法的。是现行教科书的,而不是“孬种的”!而【记 ω 为严格增序列\(\{n\}\)的极限,则 ω>n(\(\forall n∈\mathbb{N})\). 若\(ω∈\mathbb{N},则ω=max\mathbb{N}\)。但\(\mathbb{N}\) 没有最大元,故\(ω\notin \mathbb{N}\)】则是elim生造的、无现行教科书理论支撑的私生子,其论述也是无效的。
       (3)、elim不能正确认识n∈\(\mathbb{N}\)与\(A_n\subset\Omega)\)。
       elin的认为【\(\displaystyle\bigcap_{n=1}^∞  A_n=\)\(\displaystyle\lim_{n→∞} A_n=\{ω+1,ω+2,…,\}\) 反数学. 因为上式左边是N的子集,而右边与N不交】是反数学的。由于(3)、elim不能正确认识n∈\(\mathbb{N}\)与\(A_n\subset\Omega)\)关系,elim才有\(\forall m∈\mathbb{N},恒有m\notin A_m\).由m的任意性知\(A_∞=\phi\)的荒谬谓词逻辑演释,从而导致【无穷交就是一种骤变】的荒唐结果。elim既然声称自己精通集合论,在论坛中作科普、办讲座,你为什么就不根据教科书介绍的集合论基础知识去证明一下【无穷交】会不会产生【骤变】呢?
       elim是强悍的论辩家,但不是很好的教师。你开讲座,搞科普如果只是为了打压春风晚霞,其实大可不必篡改现行的基础理论!你就把我踩在脚底,打入十八层地狱也不能彰显你的伟大!如果想用【无穷交就是一种骤变】误导初学者那就太无师德,太不道德了!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-10-3 20:39 | 显示全部楼层
孬种"再咋骚整,也难掩“臭便”之臭!"的帖子表明它已理屈词穷。
被指出后就有了其白痴极限集计算合法的烂贴。尽洪荒之力恶补
集论无果的,都觉得教科书,他人帖子学术信息太少而非其太蠢.
这就叫人太蠢,种太孬
一般收敛集列\(\{A_n\}\)的极限集是 \(\displaystyle\lim_{n\to\infty} A_n = \bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k\subseteq\bigcup_{n=1}^\infty A_n\)\(\\\)
当\(\{A_n\}\)单调降时便有\(\displaystyle\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k=\bigcap_{n=1}^\infty A_n\subseteq\bigcup_{n=1}^\infty A_n\)
对\(n\in\mathbb{N},\) 令 \(A_n=\{m\in\mathbb{N}: m>n\},\;N_\infty=\displaystyle\bigcap_{n=1}^\infty A_n\),
据上述论说,\(N_\infty=\displaystyle\bigcap_{n=1}^\infty A_n =\lim_{n\to\infty}A_n\)是自然数的子集。
记 \(\omega\) 为严格增序列\(\{n\}\) 的极限\(\displaystyle\lim_{n\to\infty} n\),则 \(\omega = \sup\mathbb{N}\).
若 \(\omega\in\mathbb{N},\) 则\(\omega=\max\mathbb{N}\)。但\(\mathbb{N}\) 没有最大元,故\(\color{red}{\omega\not\in\mathbb{N}}\)
故孬种计算 \(\displaystyle\bigcap_{n=1}^\infty A_n=\lim_{n\to\infty} A_n=\{\omega+1,\omega+2,\ldots\}\) 反数学:
因为上式左边是\(\mathbb{N}\)的子集,而右边的每个成员都在\(\mathbb{N}\) 之外, 等式不成立
春氏计算反集论. 孬种一年来始终不敢面对其极限集白痴算法的荒谬
它试图含康托超限数的\(\mathbb{N}\)的扩充\(\mathbb{N}^*\)取代\(\mathbb{N}\).
且不说没有集论作者作过这种非良序取代,由\(\omega+j\not\in A_{\omega+j}\)知道仍有\(\bigcap_{\alpha\in\mathbb{N}^*}A_\alpha=\phi\)

孬种作孬千头万绪,归根结底人太蠢种太孬
回复 支持 反对

使用道具 举报

发表于 2024-10-4 03:58 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-10-4 05:56 编辑


       elim在2024-10-3  19:46推出的反现数学新帖【一般收敛集列\(\{A_n\}\)的极限集是 \(\displaystyle\lim_{n\to\infty} A_n = \bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k\subseteq\bigcup_{n=1}^\infty A_n\)\(\\\)
当\(\{A_n\}\)单调降时便有\(\displaystyle\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k=\bigcap_{n=1}^\infty A_n\subseteq\bigcup_{n=1}^\infty A_n\)
对\(n\in\mathbb{N},\) 令 \(A_n=\{m\in\mathbb{N}: m>n\},\;N_\infty=\displaystyle\bigcap_{n=1}^\infty A_n\),
据上述论说,\(N_\infty=\displaystyle\bigcap_{n=1}^\infty A_n =\lim_{n\to\infty}A_n\)是自然数的子集。
记 \(\omega\) 为严格增序列\(\{n\}\) 的极限\(\displaystyle\lim_{n\to\infty} n\),则 \(\omega = \sup\mathbb{N}\).
若 \(\omega\in\mathbb{N},\) 则\(\omega=\max\mathbb{N}\)。但\(\mathbb{N}\) 没有最大元,故\(\color{red}{\omega\not\in\mathbb{N}}\)
故孬种计算 \(\displaystyle\bigcap_{n=1}^\infty A_n=\lim_{n\to\infty} A_n=\{\omega+1,\omega+2,\ldots\}\) 反数学:
因为上式左边是\(\mathbb{N}\)的子集,而右边的每个成员都在\(\mathbb{N}\) 之外, 等式不成立】
       elim的这段陈述,仍然存在以下几个方面的问题:(1)、elim根本不知道单调集列极限集的定义,以及如何求单调集列的极限集。(2)、elim根本不知道集合论中超限数(或称超穷数)为何物,更不知道超限数的生成法则。\(\color{red}{(3)、elim不能正确认识n∈\mathbb{N}与A_n\subset\Omega}\)。
       本帖根据elim所给集列\(\{A_n=\{m∈\mathbb{N}:m>n\}\}\)着重谈谈这几个方面的问题:
       (1)、什么是单调集列的极限集,如何计算单调集列的极限集?
       根据elim所给集列\(\{A_n=\{m∈\mathbb{N}:m>n\}\}\)我们易知:\(A_1=\{2,3,4,…\}\);\(A_2=\{3,4,5…\}\);……\(A_k=\{k+1,k+2,…\}\);…且\(A_1\supset A_2\)\(\supset A_3\supset…\)\(\supset A_k\supset…\)。根据现行教科书(如周民强《实变函数论》)单调集列极限集定义:\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\)。
       (2)、什么是超限数(或超穷数),如何理解超限数(或超穷数)?
       超限数(或超穷数)产生的逻辑依据是皮亚诺万理(Peano axioms)或个Cantor 正整数生成法则。Cantor有穷基数的无穷序列:1,2,3,…\(\nu\),ω+1,ω+2,…中没有∞,也没有\(\displaystyle\lim_{n→∞}\)这样的符号。Cantor 《超穷数理论基础》一书称“数\(\nu\)既表示把一个个单位放上去的确切计数,又表示它们所汇成的整体”(参见cantor《超穷数理论基础》P42页19~20行)“ω表示(I)的整体和(I)中的数之间的一种相继次序”(参见Cantor《超穷数理论基础》P43页3~4行)。并且ω没有直接前趋,ω和∞的区別主要在于“ω表示适当的无穷,而∞表示不适当的无穷”(参见Cantor《超穷数理论基础》P42页第14~15行)。所以\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…\}=\)\(\{ω+1,ω+2,…\}\)是合法的。是现行教科书的,而不是“孬种的”!而【记 ω 为严格增序列\(\{n\}\)的极限,则 ω>n(\(\forall n∈\mathbb{N})\). 若\(ω∈\mathbb{N},则ω=max\mathbb{N}\)。但\(\mathbb{N}\) 没有最大元,故\(ω\notin \mathbb{N}\)】则是elim生造的、无现行教科书理论支撑的私生子,其论述也是无效的。
       (3)、elim不能正确认识n∈\(\mathbb{N}\)与\(A_n\subset\Omega)\)。
       因为对任何集列\(\{A_n\}\)任何时候都有全集\(\Omega=A_n^c\cap A_n\),所以对于集列\(\{A_n=\{m∈N:m>n\}\}\),\(\Omega=\displaystyle\lim_{n→∞} A_n^c\cup\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcup_{n=1} ^∞A_n^c\displaystyle\bigcup\displaystyle\bigcap_{n=1}^∞ A_n\)\(=\mathbb{N}\displaystyle\bigcup\displaystyle\lim_{n→∞} \{n+1,n+2,…\}\)\(=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\)。所以【\(\displaystyle\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k=\bigcap_{n=1}^\infty A_n\)】\(=\{ω+1,ω+2,…ω+\nu\)
       elin认为【孬种计算 \(\displaystyle\bigcap_{n=1}^\infty A_n=\lim_{n\to\infty} A_n=\{\omega+1,\omega+2,\ldots\}\) 反数学:
因为上式左边是\(\mathbb{N}\)的子集,而右边的每个成员都在\(\mathbb{N}\) 之外, 等式不成立】是无理取闹。首先elim所说的孬种除老夫外是不是还包括Cantor、周民强?是不是还包括写现行教科书编写、审批、发行的众多学者?其次elim标榜自己精通集论,你为什么不敢根据教科介绍的交集定义,求交运算的运算规律去计算\(\displaystyle\bigcap_{n=1}^∞ A_n\)?由此看来你也不是什么好种!
       elim是强悍的杠精,不是很好的教师。你开讲座,搞科普应该引导听众立足教材,紧扣集合的其本概念和运算讨论\(N_∞\)是否非空!如果只是为了打压春风晚霞,其实大可不必篡改现行的基础理论!那样只能一次又一次地暴露你反现行数学的本质。韩愈说“师者,所以传道、授业、解惑者也”。elim好些东西你自己都没弄懂,你能给你科普对象解惑吗?毫不客气的说你所传之道除了与人抬杠是没有半点作用的!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-10-4 13:28 | 显示全部楼层
孬种懂了哪一大堆,会有 \(\omega\in A_\omega=\{m\in\mathbb{N}: m>\omega\}\) ?
如果上式成立,当然就有 \(\omega\in\mathbb{N}\subset\mathbb{R}=(-\infty,\infty)\) 这表示
超限数是\(\mathbb{N}\) 的代数扩充 \(\mathbb{R}\) 的成员,而\((-\infty,\infty)\)不含超限数.
孬种此番倒腾,除了显摆种够孬,还有啥作用,自蛋自捣?
孬种作孬千头万绪,归根结底人太蠢种太孬
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-9 06:10 , Processed in 0.082378 second(s), 12 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表