数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: yangchuanju

梅森素数特别判定法

[复制链接]
 楼主| 发表于 2024-9-12 07:57 | 显示全部楼层
本帖最后由 yangchuanju 于 2024-9-12 07:59 编辑

2^37-1=        137438953471<12>=223*616318177

2^37-1及因子        循环节长        循环开始
223        3        r6=211开始
616318177        516924        r4=37634开始
1.37439E+11        516924        r6=111419319480开始

复算正确,2^37-1的循环节长等于它的大因子616318177的循环节长,但开始循环点大2。               
回复 支持 反对

使用道具 举报

发表于 2024-9-12 23:07 | 显示全部楼层
已知:\(\frac{a^2}{5m}+mt^2=m^3\),\(m\ne3c\),整数\(a>0\),\(c>0\)
奇数\(m>0\),素数\(p>0\),\(t>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{7m}+mt^2=m^3\),\(m\ne3c\),\(m\ne5k\)
整数\(a>0\),\(c>0\),\(k>0\),奇数\(m>0\),素数\(p>0\),\(t>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{my}+mt^2=m^3\),\(m\ne3c\),\(m\ne5k\),\(y\ne3n\),\(y\ne5r\)
\(m>y\),\(my>t\),整数\(a>0\),\(c>0\),\(k>0\),\(n>0\),\(r>0\)
奇数\(m>0\),\(y>0\),素数\(p>0\),\(t>0\),\(v>0\)
求证:\(m=p\),\(y=v\)
已知:\(\frac{a^2}{my}+mt^2=m^3\),\(m\ne3c\),\(m\ne5k\),\(m\ne uy\)
\(y\ne3n\),\(y\ne5r\),\(m>y\),\(my>t\),整数\(a>0\),\(c>0\),\(k>0\)
\(n>0\),\(r>0\),\(u>0\),奇数\(m>0\),\(y>0\),素数\(p>0\),\(t>0\),\(v>0\)
求证:\(m=p\),\(y=v\)
已知:\(\frac{a^2}{7m}-7t^2=343\),\(m\ne3c\),\(m\ne5k\),\(7m>t\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>0\),素数\(p>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{11m}-11t^2=1331\),\(m\ne3c\),\(m\ne5k\),\(11m>t\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>0\),素数\(p>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{my}-mt^2=m^3\),\(y\ne3c\),\(y\ne5k\),\(y>m\),\(my>t\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(y>0\),素数\(m>5\),\(p>0\)
求证:\(y=p\)
已知:\(\frac{a^2}{my}+mt^2=m^3\),\(m\ne3c\),\(m\ne5k\),\(m>y\),\(my>t\),\(t=v^n\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>0\),素数\(p>0\),\(v>0\),\(y>3\)
求证:\(m=p\)
已知:\(\frac{a^2}{my}+mt^2=m^3\),\(m\ne3c\),\(m\ne5k\),\(m>y\),\(my>t\),\(t=v^n\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>0\),素数\(p>0\),\(v>2\),\(y>3\)
求证:\(m=p\)
素数公式可能是正确的,验证大量数据,没有找到反例
yangchuanju先生,不知能不能找到反例?
回复 支持 反对

使用道具 举报

发表于 2024-9-13 01:18 | 显示全部楼层
已知:\(\frac{a^2}{5m}+mt^2=m^3\),\(m\ne3c\),整数\(a>0\),\(c>0\)
奇数\(m>0\),素数\(p>0\),\(t>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{7m}+mt^2=m^3\),\(m\ne3c\),\(m\ne5k\)
整数\(a>0\),\(c>0\),\(k>0\),奇数\(m>0\),素数\(p>0\),\(t>0\)
求证:\(m=p\)
求证:\(m=p\),\(y=v\)
已知:\(\frac{a^2}{my}+mt^2=m^3\),\(m\ne3c\),\(y\ne3u\),\(m>y\),\(my>t\)
整数\(a>0\),\(c>0\),\(u>0\),奇数\(m>0\),\(y>0\),素数\(p>0\),\(t>0\),\(v>0\)
求证:\(m=p\),\(y=v\)
素数公式是正确
发现\(m\)是合数,\(m\)最小的质因数是\(q\),\(t=qw\),整数\(w>0\),\(t\)是合数,
通过大量数据验证得出结果,\(t=qw\),\(m\)和\(t\)不能互质,它们有公共素因子
如果\(t\)是素数,\(m\)肯定是素数,素数公式是正确
回复 支持 反对

使用道具 举报

发表于 2024-9-13 08:04 | 显示全部楼层
本帖最后由 太阳 于 2024-9-13 08:07 编辑

已知:\(\frac{a^2}{5m}+mt^2=m^3\),\(m\ne3c\),整数\(a>0\),\(c>0\)
奇数\(m>0\),素数\(p>0\),\(t>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{7m}+mt^2=m^3\),\(m\ne3c\),\(m\ne5k\)
整数\(a>0\),\(c>0\),\(k>0\),奇数\(m>0\),素数\(p>0\),\(t>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{my}+mt^2=m^3\),\(m\ne3c\),\(y\ne3u\),\(m>y\),\(my>t\)
整数\(a>0\),\(c>0\),\(u>0\),奇数\(m>0\),\(y>0\),素数\(p>0\),\(t>0\),\(v>0\)
求证:\(m=p\),\(y=v\)
已知:\(\frac{a^2}{7m}-7t^2=343\),\(m\ne3c\),\(m\ne5k\),\(7m>t\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>0\),素数\(p>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{11m}-11t^2=1331\),\(m\ne3c\),\(m\ne5k\),\(11m>t\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>0\),素数\(p>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{my}-mt^2=m^3\),\(y\ne3c\),\(y\ne5k\),\(y>m\),\(my>t\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(y>0\),素数\(m>5\),\(p>0\)
求证:\(y=p\)
已知:\(\frac{a^2}{c}-mt^2=m^3\),\(c=my\),\(c\ne3k\),\(c\ne5u\),\(y>m\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(u>0\),奇数\(m>1\),\(y>1\),素数\(p>0\),\(v>0\)
求证:\(m=p\),\(y=v\)
回复 支持 反对

使用道具 举报

发表于 2024-9-13 13:10 | 显示全部楼层
命题是错误的,找到反例,a^2/7/253+253*t^2=253^3,t=197
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-9-14 17:21 | 显示全部楼层
2^41-1=        2199023255551<13>&#160;=&#160;13367&#160;·&#160;164511353
它有两个素因子13367和164511353的LL检验法余数列循环节长分别为1620和6096,       
大梅森数的余数列循环节长可能为(最小公倍数)——822960或它的某个约数。       
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-9-14 17:21 | 显示全部楼层
2^43-1=        8796093022207<13>&#160;=&#160;431&#160;·&#160;9719&#160;·&#160;2099863
它有三个素因子431,8719和2099863的LL检验法余数列循环节长分别为28,28和60,       
大梅森数的余数列循环节长可能为(最小公倍数)——420或它的某个约数。       
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-9-14 17:21 | 显示全部楼层
2^45-1=        35184372088831<14>&#160;=&#160;7&#160;·&#160;31&#160;·&#160;73&#160;·&#160;151&#160;·&#160;631&#160;·&#160;23311
它有素因子较多,但都不是很大,不计梅森素数因子7和31,其余素因子73,151,631和23311的LL检验法余数列循环节长分别为3,9,39和115,       
大梅森数的余数列循环节长可能为3,9,39和115的最小公倍数——13455或它的某个约数。       
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-9-14 17:23 | 显示全部楼层
2^47-1=        140737488355327<15>&#160;=&#160;2351&#160;·&#160;4513&#160;·&#160;13264529
它有三个素因子2351,4513和13264519的LL检验法余数列循环节长分别为460,46和165806,       
大梅森数的余数列循环节长可能为(最小公倍数)——38135380或它的某个约数。       
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-9-14 17:23 | 显示全部楼层
2^51-1=        2251799813685247<16>&#160;=&#160;7&#160;·&#160;103&#160;·&#160;2143&#160;·&#160;11119&#160;·&#160;131071
它有素因子较多,但都不是很大,不计梅森素数因子7和131071,其余素因子103,2143和11119的LL检验法余数列循环节长分别为6,33和276,       
大梅森数的余数列循环节长可能为6,33和276的最小公倍数——3036或它的某个约数。       
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-9-13 22:08 , Processed in 0.106525 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表