数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge\color{red}{\textbf{再论自然数皆非超穷数}}\)

[复制链接]
发表于 2025-5-19 17:41 | 显示全部楼层

       我不管你是翘楚还是白痴,更不管你的逻辑是底层逻辑还是顶层逻辑。你的【\(v=\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}=\)\(sup\mathbb{N}\)\(\notin\)\(\mathbb{N}\)】就是混帐逻辑!现证明\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)\(\ne\sup\mathbb{N}\)!
       【证明:】根据冯\(\cdot\)诺依曼自然数构成法后继的定义:对于集合\(x\)称集合\(x\cup\{x\}\)为\(x\)的后继 (参见清华大学张峰 陶然著《集合论基础教程》P84页定义5.2.1) .\(v=\displaystyle\lim_{n \to \infty}n\in\{0,1,2,…(\displaystyle\lim_{n \to \infty}n-1),\displaystyle\lim_{n \to \infty}n\}=\)\(\displaystyle\lim_{n \to \infty}n+1\),所以elim先生的【\(v=\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}=\)\(sup\mathbb{N}\)\(\notin\)\(\mathbb{N}\)】逻辑就是混帐逻辑!当然我们可根据单增集列\(0=\phi\),\(1=\{0\}\),\(2=\{0,1\}\),…\(\displaystyle\lim_{n \to \infty}n=\{0,1,…(\displaystyle\lim_{n \to \infty}n-1)\}\),\(\displaystyle\lim_{n \to \infty}n+1=\{0,1,…\displaystyle\lim_{n \to \infty}n\}\),证得\(sup\mathbb{N}=\displaystyle\lim_{n \to \infty}n+1\in\displaystyle\lim_{n \to \infty}n+2\)!【证毕】
       故此只有畜生不如的白痴才会认为\(\mathbb{N}\notin\mathbb{N}\)是自洽的!
回复 支持 反对

使用道具 举报

发表于 2025-5-19 17:45 | 显示全部楼层

       我不管你是翘楚还是白痴,更不管你的逻辑是底层逻辑还是顶层逻辑。你的【\(v=\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}=\)\(sup\mathbb{N}\)\(\notin\)\(\mathbb{N}\)】就是混帐逻辑!现证明\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)\(\ne\sup\mathbb{N}\)!
       【证明:】根据冯\(\cdot\)诺依曼自然数构成法后继的定义:对于集合\(x\)称集合\(x\cup\{x\}\)为\(x\)的后继 (参见清华大学张峰 陶然著《集合论基础教程》P84页定义5.2.1) .\(v=\displaystyle\lim_{n \to \infty}n\in\{0,1,2,…(\displaystyle\lim_{n \to \infty}n-1),\displaystyle\lim_{n \to \infty}n\}=\)\(\displaystyle\lim_{n \to \infty}n+1\),所以elim先生的【\(v=\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}=\)\(sup\mathbb{N}\)\(\notin\)\(\mathbb{N}\)】逻辑就是混帐逻辑!当然我们可根据单增集列\(0=\phi\),\(1=\{0\}\),\(2=\{0,1\}\),…\(\displaystyle\lim_{n \to \infty}n=\{0,1,…(\displaystyle\lim_{n \to \infty}n-1)\}\),\(\displaystyle\lim_{n \to \infty}n+1=\{0,1,…\displaystyle\lim_{n \to \infty}n\}\),证得\(sup\mathbb{N}=\displaystyle\lim_{n \to \infty}n+1\in\displaystyle\lim_{n \to \infty}n+2\)!【证毕】
       故此只有畜生不如的白痴才会认为\(\mathbb{N}\notin\mathbb{N}\)是自洽的!
回复 支持 反对

使用道具 举报

发表于 2025-5-19 17:48 | 显示全部楼层

       我不管你是翘楚还是白痴,更不管你的逻辑是底层逻辑还是顶层逻辑。你的【\(v=\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}=\)\(sup\mathbb{N}\)\(\notin\)\(\mathbb{N}\)】就是混帐逻辑!现证明\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)\(\ne\sup\mathbb{N}\)!
       【证明:】根据冯\(\cdot\)诺依曼自然数构成法后继的定义:对于集合\(x\)称集合\(x\cup\{x\}\)为\(x\)的后继 (参见清华大学张峰 陶然著《集合论基础教程》P84页定义5.2.1) .\(v=\displaystyle\lim_{n \to \infty}n\in\{0,1,2,…(\displaystyle\lim_{n \to \infty}n-1),\displaystyle\lim_{n \to \infty}n\}=\)\(\displaystyle\lim_{n \to \infty}n+1\),所以elim先生的【\(v=\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}=\)\(sup\mathbb{N}\)\(\notin\)\(\mathbb{N}\)】逻辑就是混帐逻辑!当然我们可根据单增集列\(0=\phi\),\(1=\{0\}\),\(2=\{0,1\}\),…\(\displaystyle\lim_{n \to \infty}n=\{0,1,…(\displaystyle\lim_{n \to \infty}n-1)\}\),\(\displaystyle\lim_{n \to \infty}n+1=\{0,1,…\displaystyle\lim_{n \to \infty}n\}\),证得\(sup\mathbb{N}=\displaystyle\lim_{n \to \infty}n+1\in\displaystyle\lim_{n \to \infty}n+2\)!【证毕】
       故此只有畜生不如的白痴才会认为\(\mathbb{N}\notin\mathbb{N}\)是自洽的!
回复 支持 反对

使用道具 举报

发表于 2025-5-19 17:59 | 显示全部楼层

       我不管你是翘楚还是白痴,更不管你的逻辑是底层逻辑还是顶层逻辑。你的【\(v=\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}=\)\(sup\mathbb{N}\)\(\notin\)\(\mathbb{N}\)】就是混帐逻辑!现证明\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)\(\ne\sup\mathbb{N}\)!
       【证明:】根据冯\(\cdot\)诺依曼自然数构成法后继的定义:对于集合\(x\)称集合\(x\cup\{x\}\)为\(x\)的后继 (参见清华大学张峰 陶然著《集合论基础教程》P84页定义5.2.1) .\(v=\displaystyle\lim_{n \to \infty}n\in\{0,1,2,…(\displaystyle\lim_{n \to \infty}n-1),\displaystyle\lim_{n \to \infty}n\}=\)\(\displaystyle\lim_{n \to \infty}n+1\),所以elim先生的【\(v=\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}=\)\(sup\mathbb{N}\)\(\notin\)\(\mathbb{N}\)】逻辑就是混帐逻辑!当然我们可根据单增集列\(0=\phi\),\(1=\{0\}\),\(2=\{0,1\}\),…\(\displaystyle\lim_{n \to \infty}n=\{0,1,…(\displaystyle\lim_{n \to \infty}n-1)\}\),\(\displaystyle\lim_{n \to \infty}n+1=\{0,1,…\displaystyle\lim_{n \to \infty}n\}\),证得\(sup\mathbb{N}=\displaystyle\lim_{n \to \infty}n+1\in\displaystyle\lim_{n \to \infty}n+2\)!【证毕】
       故此只有畜生不如的白痴才会认为\(\mathbb{N}\notin\mathbb{N}\)是自洽的!
回复 支持 反对

使用道具 举报

发表于 2025-5-19 19:08 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-5-20 07:00 编辑

由皮亚诺公理得自然数的递归集(\(\dagger\))\(0=\phi\),\(n+1=n\cup\{n\}=\{0,…,n\}\)得\(\displaystyle\lim_{n \to \infty}n\in\)\(\{0,1,2,…,\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty} (n+1)\),【自然数皆为\(\mathbb{N}\)的真子集】尚等证明,不能作为论据!你说了半天,并没有说清楚什么是自然数?为什么\(\displaystyle\lim_{n \to \infty}n\)不是自然数?难道这就是你的底层逻辑?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-5-20 06:57 | 显示全部楼层
畜生不如的蠢疯顽瞎,什么是你的 lim n?
顽瞎目测 {n} 收敛到哪里了?孬种称
\(\displaystyle\lim_{n\to\infty} n\in\{0,1,\ldots,\displaystyle\lim_{n\to\infty} n\}=\mathbb{N},\)
\(\mathbb{N}\)有最大元吗,白痴?
回复 支持 反对

使用道具 举报

发表于 2025-5-20 07:09 | 显示全部楼层
由皮亚诺公理得自然数的递归集(\(\dagger\))\(0=\phi\),\(n+1=n\cup\{n\}=\{0,…,n\}\)得\(\displaystyle\lim_{n \to \infty}n\in\)\(\{0,1,2,…,\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty} (n+1)\),【自然数皆为\(\mathbb{N}\)的真子集】尚等证明,不能作为论据!你说了半天,并没有说清楚什么是自然数?为什么\(\displaystyle\lim_{n \to \infty}n\)不是自然数?难道这就是你的底层逻辑?是的,\(\mathbb{N}\)无最大元,试问elim在你的数学认知中有最大无穷大,较大无穷大,最小无穷大吗?谁是白痴岂不显见?
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-2 22:22 , Processed in 0.112467 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表