数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\star\textbf{ 滚驴}\color{red}{\textbf{截断定理}}\textbf{泡汤}\)

[复制链接]
发表于 2025-8-7 08:33 | 显示全部楼层

        elim于 2025-8-7 05:03再次贴出他反人类数学的宿帖,以证明他的【无穷交就是一种骤变】的正确性,从百间接地“证明”\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)。现对其全文评析于后:
【原文】
        \(\mathbb{N}_{\infty}=\)\(\displaystyle\bigcap_{n=1}^{\infty}A_n\)\((A_k=\{m\in\mathbb{N}:m>k\}(k\in\mathbb{N})\)是\(\mathbb {N}\)的子集①.对任意的\(m\in\mathbb{N}\)易见\(m\notin\mathbb{N}\)②所以m不是\(A_1\),……,\(A_m\),\(A_{m+1}\),……的公共元,即不是\(\mathbb{N}_{\infty}=\)\(\displaystyle\bigcap_{n=1}^{\infty}A_n\)的元③.所以\(\boxed{\mathbb{N}_{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n=\phi}\).
顽瞎目测再度泡汤:\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}=\)\(\{\displaystyle\lim_{n \to \infty}n+1,\displaystyle\lim_{n \to \infty}n+2,…\}\)与降列极限定义相悖④,因\(lim n\)非自然数显为荒谬.(原文中序号为春风晚霞评述方便所加).
\(\color{red}{【评述】}\)
        ①、对于求单调集列\((A_k=\{m[in\mathbb{N}:m>k\}(k\in\mathbb{N})\)的问题,任何时候都有\(\displaystyle\bigcap_{n=1}^{\infty}A_n\subset\Omega\),式中\(\Omega\)=\(\displaystyle\bigcup_{n =1}^{\infty}A_n^c\)\(\bigcup\)\(\displaystyle\bigcap_{n=1}^{ \infty}A_n\),所以(\mathbb{N}_{\infty}\)非\(\mathbb{N}\)的子集!
        ②、虽然【对任意的\(m\in\mathbb{N}\)易见\(m\notin\mathbb{N}\)】,但对elim【\(m\in\mathbb{N}\)】都有\((m+j)\in\Omega\),如\(10\notin A_{10}\)但,11,12,…都属于\(A_{10}\)。所以elim【逐点排查】挂一漏万!
        ③虽然【m不是\(A_1\),……,\(A_m\),\(A_{m+1}\),……的公共元】,但是\(\displaystyle\lim_{n \to \infty}n\),\(\displaystyle\lim_{n \to \infty}(n+1)\),…是\(A_1\),……,\(A_m\),\(A_{m+1}\),……的公共元!所以\(\boxed{\mathbb{N}_{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n\ne\phi}\)!.
        ④、因为单调集列\(A_k=\{m\in\mathbb{N}:m>k\}(k\in\mathbb{N}=\)\(\{k+1,K+2,…\}\)单调递减,根据单减集列极限集的定义有\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcap_{k=1}^{\infty}A_k\)\(=\displaystyle\lim_{n \to \infty}\{(n+1),(n+2),…\}\ne\phi\)!所以【与降列极限定义相悖】的是elim的【\(\boxed{\mathbb{N}_{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n=\phi}\)】,故此泡汤的是elim的“臭便”之法而不是春风晚霞的目测法!

回复 支持 反对

使用道具 举报

发表于 2025-8-7 09:34 | 显示全部楼层

        【原文】【定理】自然数皆有限数.
        \(\color{red}{【评析】}\)
        elim的定理【【定理】自然数皆有限数】命题为假,改成:【有限自然数皆自然数】方为真命题。
        【原文】【证明】记\(\alpha\)为最小无穷序数,则它之前的都是有限序数.因\(\alpha\)不是有限序数的后继,故其不是任何序数的后继即\(\alpha\)不是自然数,但序数链\(\mathbb{N}\)不含非自然数, 故\(\alpha\)后面无自然数. 即\(\mathbb{N}\)是\(\alpha\)的前段可见自然数皆有限数.
        \(\color{red}{【评析】}\)
        elim关于定理的证明与《集合论》中有限自然数的定义仿真度极高。只是把自然数截段概念中\(\{x:x\in\mathbb{N}且x\le n\}\)其本一致,所不同的只是把\(\{x:x\in\mathbb{N}且x\le n\}\)中的n换成\(\alpha\),忽略\(\alpha\in\mathbb{N}\)这个条件。其余与有限集的定义雷同。(参见方嘉琳《集合论》P82页定义3)。所以elim先生用有限集的定义来证明自然数皆有限数是循环论证。
        【原文】【推论1】\(\alpha=\omega \)(1st极限序数)
        \(\color{red}{【评析】}\)
        由\(\alpha=\omega \)反推证明伊始的【记\(\alpha\)为最小无穷序数】,可以看出elim是在玩借尸还魂的把戏。从康托尔有穷基数的无穷序列1,2,…,\(\nu(=\displaystyle\lim_{n \to \infty}n\),\(\alpha\),……看,\(\displaystyle\lim_{n \to \infty}n\)是属于\(\mathbb{N}\)的。所以elim是想通过他的循环论证,野蛮地把\(\displaystyle\lim_{n \to \infty}n\)逐出自然数集\(\mathbb{N}\)
        【原文】【推论2】\(\displaystyle\lim_{n \to \infty}n\)不是自然数.
         \(\color{red}{【评析】}\)
        由有限自然数的定义,推导不出【\(\displaystyle\lim_{n \to \infty}n\)不是自然数.】
        【原文】自然数完全由皮亚诺公理确定. 而极限, 无穷(及有穷有限)这些概念却不能由皮亚诺公理导出. 但从数学基础的视角看, 康托的序数概念逻辑上是先于自然数概念的\(\mathbb{N}\)是满足皮亚诺公理的序数全体). 小于最小无穷序数, \(\alpha\)的序数是有限序数. 从这些认识得出\(\mathbb{N}\)是\(\alpha\)的前段 的猜想. 而本定理就是被论证后的这一猜想的直接推论..
        \(\color{red}{【评析】}\)
        你既然知道【自然数完全由皮亚诺公理确定】、【康托的序数概念逻辑上是先于自然数概念的】那你为什么还把用皮亚诺公理或康托尔实正整数理论证明\(\displaystyle\lim_{n \to \infty}n\)是自然数的方法诬陷为目测法?你那个“底层逻辑”倒是不用目测方法,得出的结论对吗?
回复 支持 反对

使用道具 举报

发表于 2025-8-7 11:39 | 显示全部楼层

         陶哲轩证否【自然数皆有限数】.参见陶哲轩《陶哲轩实分析》P58页定理3.6.12及证明。
        【定理3.6.12】自然数集N 是无限集
        【证明】为了推出矛盾,我们假设自然数集N是有限集,于是它的基数是某个自然数\(\Re\lgroup N\rgroup=n\)。因此存在从\(\{i\in N:1\le i\le n\}\)到N的一个双射\(f\),我们能够证明序列\(f(1)\),\(f(2)\),…\(f(n)\)是有限的。或更准确的说,存在一个自然数M使得\(f(i)\le M\)对序列的有地\(1\le i\le n\)均成立。但自然数M+1对任一个\(f(i)\)都不相等。这与\(f\)是一个双射的假设矛盾。所以定理3.6.12成立。\(\Box\)
        从【自然数M+1对任一个\(f(i)\)都不相等】知【自然数皆有限数】是一个伪命题!

回复 支持 反对

使用道具 举报

发表于 2025-8-7 12:32 | 显示全部楼层
elim 发表于 2025-8-7 12:31
\(\huge\color{teal}{\textbf{孬种反数学猿声啼不住, 滚驴离正道已隔万重山}}\)

设\(\alpha\)是最小无 ...


         陶哲轩证否【自然数皆有限数】.参见陶哲轩《陶哲轩实分析》P58页定理3.6.12及证明。
        【定理3.6.12】自然数集N 是无限集
        【证明】为了推出矛盾,我们假设自然数集N是有限集,于是它的基数是某个自然数\(\Re\lgroup N\rgroup=n\)。因此存在从\(\{i\in N:1\le i\le n\}\)到N的一个双射\(f\),我们能够证明序列\(f(1)\),\(f(2)\),…\(f(n)\)是有限的。或更准确的说,存在一个自然数M使得\(f(i)\le M\)对序列的有地\(1\le i\le n\)均成立。但自然数M+1对任一个\(f(i)\)都不相等。这与\(f\)是一个双射的假设矛盾。所以定理3.6.12成立。\(\Box\)
        从【自然数M+1对任一个\(f(i)\)都不相等】知【自然数皆有限数】是一个伪命题!
回复 支持 反对

使用道具 举报

发表于 2025-8-9 04:46 | 显示全部楼层

elim好了不起哟,既精通集合论,又精通自然数理论!就是不知道什么是无穷?什么叫趋向无穷?什么是无穷数?什么是超穷数?就是不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!就是不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!就是不知道你的“臭便”之法挂一个漏万的荒谬性。像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?其实你对自然数的认知不如小学四年级的学生,绿对集合论的认识当然不及高中一年级的学生了。像你这样什么都不知道的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出耒显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-8-9 09:36 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-8-9 11:18 编辑


elim好了不起哟,既精通集合论,又精通自然数理论!就是不知道什么是无穷?什么叫趋向无穷?什么是无穷数?什么是超穷数?就是不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!就是不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!就是不知道你的“臭便”之法挂一个漏万的荒谬性。像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?其实你对自然数的认知不如小学四年级的学生,绿对集合论的认识当然不及高中一年级的学生了。像你这样什么都不知道的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出耒显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-8-9 11:18 | 显示全部楼层

elim好了不起哟,既精通集合论,又精通自然数理论!就是不知道什么是无穷?什么叫趋向无穷?什么是无穷数?什么是超穷数?就是不知道\(v=\displaystyle\lim_{n \to \infty}n\)、ω、\(\aleph_0\)、\(\aleph\)各自的定义以及它们与∞的区别与联系!就是不知道单调集列极限集的定义的的自洽性(即与交并运算规律的兼容性)!就是不知道你的“臭便”之法挂一个漏万的荒谬性。像你这样连无穷数都不认可的民科领袖,还有谁能奢望你正确解读集合论和自然数理论呢?其实你对自然数的认知不如小学四年级的学生,绿对集合论的认识当然不及高中一年级的学生了。像你这样什么都不知道的民科领袖,还好意思把被批烂批臭的宿帖、观点拿出耒显摆,真是“人不要脸,所向无敌”哟!
回复 支持 反对

使用道具 举报

发表于 2025-8-9 21:20 | 显示全部楼层
elim【无穷交就是一种骤变】反数学!



        elim再次贴出他反人类数学的宿帖,以证明他的【无穷交就是一种骤变】的正确性,从百间接地“证明”\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)。现对其全文评析于后:
【原文】
        \(\mathbb{N}_{\infty}=\)\(\displaystyle\bigcap_{n=1}^{\infty}A_n\)\((A_k=\{m\in\mathbb{N}:m>k\}(k\in\mathbb{N})\)是\(\mathbb {N}\)的子集①.对任意的\(m\in\mathbb{N}\)易见\(m\notin\mathbb{N}\)②所以m不是\(A_1\),……,\(A_m\),\(A_{m+1}\),……的公共元,即不是\(\mathbb{N}_{\infty}=\)\(\displaystyle\bigcap_{n=1}^{\infty}A_n\)的元③.所以\(\boxed{\mathbb{N}_{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n=\phi}\).
顽瞎目测再度泡汤:\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}=\)\(\{\displaystyle\lim_{n \to \infty}n+1,\displaystyle\lim_{n \to \infty}n+2,…\}\)与降列极限定义相悖④,因\(lim n\)非自然数显为荒谬.(原文中序号为春风晚霞评述方便所加).
\(\color{red}{【评述】}\)
        ①、对于求单调集列\((A_k=\{m\in\mathbb{N}:m>k\}(k\in\mathbb{N})\)的问题,任何时候都有\(\displaystyle\bigcap_{n=1}^{\infty}A_n\subset\Omega\),式中\(\Omega\)=\(\displaystyle\bigcup_{n =1}^{\infty}A_n^c\)\(\bigcup\)\(\displaystyle\bigcap_{n=1}^{ \infty}A_n\),所以\(\mathbb{N}_{\infty}\)非\(\mathbb{N}\)的子集!
        ②、虽然【对任意的\(m\in\mathbb{N}\)易见\(m\notin\mathbb{N}\)】,但对elim【\(m\in\mathbb{N}\)】都有\((m+j)\in\Omega\),如\(10\notin A_{10}\)但,11,12,…都属于\(A_{10}\)。所以elim【逐点排查】挂一漏万!
        ③虽然【m不是\(A_1\),……,\(A_m\),\(A_{m+1}\),……的公共元】,但是\(\displaystyle\lim_{n \to \infty}n\),\(\displaystyle\lim_{n \to \infty}(n+1)\),…是\(A_1\),……,\(A_m\),\(A_{m+1}\),……的公共元!所以\(\boxed{\mathbb{N}_{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n\ne\phi}\)!.
        ④、因为单调集列\(A_k=\{m\in\mathbb{N}:m>k\}(k\in\mathbb{N}=\)\(\{k+1,K+2,…\}\)单调递减,根据单减集列极限集的定义有\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcap_{k=1}^{\infty}A_k\)\(=\displaystyle\lim_{n \to \infty}\{(n+1),(n+2),…\}\ne\phi\)!所以【与降列极限定义相悖】的是elim的【\(\boxed{\mathbb{N}_{\infty}=\displaystyle\bigcap_{n=1}^{\infty}A_n=\phi}\)】,故此泡汤的是elim的“臭便”之法而不是春风晚霞的目测法!
回复 支持 反对

使用道具 举报

发表于 2025-8-9 21:35 | 显示全部楼层

定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-8-9 21:36 | 显示全部楼层

定理:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}
【证毕】
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 17:35 , Processed in 0.085518 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表