|
1、自然数的ISO定义:
【定义:】非负整数‌(0,1,2,3,...)叫自然数。
2、ISO是什么组织
ISO是国际标准化组织(International Organization for Standardization)的简称
3、自然数集\(\mathbb{N}\)的定义:
【定义:】所有非负整数(0及正整数),用于计量物体数量或表示次序的数所成的集合叫自然数集\(\mathbb{N}\).
4、【定理】\(\mathbb{N}\subset\Omega\)
【证明:】由康托尔有穷基数的无穷数列1,2,…\(\nu(=\displaystyle\lim_{n \to \infty}n)\),ω,ω+1,…知\(\Omega=\)\(\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\),其中\(\Omega_j=\{jω,jω+1,…jω+\nu(=\displaystyle\lim_{n \to \infty}n)\}\).所以\(\mathbb{N}\subset\Omega\).
5、【定理:】\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
【证明:】根据国际标准ISO 80000-2:2019的关于自然数和自然数集\(\mathbb{N}\)的定义,因为\(v=\displaystyle\lim_{n \to \infty}n>0\)(即\(v\)非负),所以\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
|
|