|
对elim所给集列\(\{A_m:=\{k\in\mathbb{N}:k>m\}\}\)易证\(A_m:=\{k\in\mathbb{N}:\)\(k>m\}\supset\)\(A_{m+1}:=\{k\in\)\(\mathbb{N}:\)\(k>(m+1)\}\),根据单调递减集列极限集定义(如周民强《实变函数论》 P9页定义1.8)\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcap_{n=1}^{ \infty}A_n=\)\(\{\displaystyle\lim_{n \to \infty}(n\)\(+1),\)\(\displaystyle\lim_{n \to \infty}(n+2),…\}\) .所以\(\mathbb{N}_{\infty}=\displaystyle\lim_{n \to \infty}A_n\ne\phi\)!所以elim的\(\mathbb{N}_{\infty}=\phi\)(即elim的臆测法)才是货真价实地反数学谬论! |
|