数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\color{red}{^\star\textbf{ 科普}\lim n=\lim \frac{10^n}{n}=\lim 10^n}\)

[复制链接]
发表于 2025-10-27 06:42 | 显示全部楼层

        elim,在现行数学中\(\infty=\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1),\)\(N_ε∈N\)。所以\(\displaystyle\lim_{n \to \infty}n\)\(\in N\)\((即\displaystyle\lim_{n \to \infty}n\)\(\to\infty)\)!但\(\displaystyle\lim_{n \to \infty}n\)\(\ne\)\(\infty\)!故此陶哲轩没有错,大错而特错的是民科领袖elim无视威尔斯特拉斯对\(\infty\)和趋向\(\infty\)的定义,自出心裁的定义出一套与现行数学根本不相容的歪理,方得到诸如【无穷交就是一种骤变】、【\(\displaystyle\lim_{n \to \infty}n\)\(=Sup\mathbb{N}\)】……等反现行数学的谬论。这种连最基础的数学基本概念,基本方法都要篡改一通的王八蛋,还有什么脸怼春氏可达!?
回复 支持 反对

使用道具 举报

发表于 2025-10-27 13:03 | 显示全部楼层

        elim,在现行数学中\(\infty=\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1),\)\(N_ε∈N\)。所以\(\displaystyle\lim_{n \to \infty}n\)\(\in N\)\((即\displaystyle\lim_{n \to \infty}n\)\(\to\infty)\)!但\(\displaystyle\lim_{n \to \infty}n\)\(\ne\)\(\infty\)!故此陶哲轩没有错,大错而特错的是民科领袖elim无视威尔斯特拉斯对\(\infty\)和趋向\(\infty\)的定义,自出心裁的定义出一套与现行数学根本不相容的歪理,方得到诸如【无穷交就是一种骤变】、【\(\displaystyle\lim_{n \to \infty}n\)\(=Sup\mathbb{N}\)】……等反现行数学的谬论。这种连最基础的数学基本概念,基本方法都要篡改一通的王八蛋,还有什么脸怼春氏可达!?
回复 支持 反对

使用道具 举报

发表于 2025-10-28 05:56 | 显示全部楼层

       由于elim根本不知道什么是自然数?什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?所以elim总结出来的一切“理论”均不自洽,也不与现行数学兼容。
        一、什么是自然数?
        现行教材对自然数有两种定义:
        定义1(康托尔定义)有限集合的基数称作自然数。
        显然康托尔是认同无穷自然数的,因为在康托尔非负整数集\(\Omega=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}\Omega_j=\)\(\{j\omega,j\omega+1,j\omega+2,……j\omega+\nu\}\),当j=0时,\(\Omega_0=\)\(\{0,1,2,\)\(…,\nu\}\),其中\(\nu=\)\(\displaystyle\lim_{n\to\infty}n\),因此我们有理由认为康托尔是支持\(\displaystyle\lim_{n\to\infty}n\in\mathbb{N}\)的。
        定义2(即皮亚诺公理定义)满足皮亚公理的非负整数叫自然数
        现在我们证明数\(\nu=\displaystyle\lim_{n\to\infty}n\)满足皮亚诺公理:因数\(\nu\ne0\),所以\(\nu\)有直前\(\nu-1\),同理\(\nu-1\)有直前\(\nu-2\),…根据定理〖若\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\),则\(\mathbb{N}=\phi\).〗所以皮亚诺亦认可\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\),同时,我们还可以证明\(\displaystyle\lim_{n \to \infty}(n+j)\in\mathbb{N}\).故此\(\displaystyle\lim_{n \to \infty}n\)满足皮亚诺公理,所以\(\displaystyle\lim_{n \to \infty}n\)是自然数。
        二、什么是无穷,什么是趋向无穷?
        定义1(威尔斯托拉斯定义)对\(\color{red}{\forall\varepsilon>0,\exists N(=[\tfrac{1}{\varepsilon}]+1)\in\mathbb{N}}\)称\(\mathbb{N}_{\infty}=\)\(\{n|n> N(=[\tfrac{1}{\varepsilon}]+1)\}为\infty\)
        定义2 当\(n\in\mathbb{N}\)时,称n趋向于\(\infty\),记为\(n\to\infty\).
        根据威尔斯托拉斯关于\(\mathbb{N}_{\infty}\)的定义,\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
        三、什么是无穷数,什么是真穷数?
        在现行数学理论中我们称集合\(\mathbb{N}_{\infty}=\)\(\{n|n> N(=[\tfrac{1}{\varepsilon}]+1)\)中的每个数都叫无穷数,而集合\(\Omega_j=\)\(\{j\omega,j\omega+1,j\omega+2,…j\omega+\nu\}\)(\(j\ne 0\))中的每个数都叫超穷数!显然大学者elim的\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),\(\mathbb{N}_{\infty}=\phi\)都不自洽,也不与现行数学兼容。
回复 支持 反对

使用道具 举报

发表于 2025-10-29 06:44 | 显示全部楼层

        elim,在现行数学中\(\infty=\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1),\)\(N_ε∈N\}\)。所以\(\displaystyle\lim_{n \to \infty}n\)\(\in N\)\((即\displaystyle\lim_{n \to \infty}n\)\(\to\infty)\)!但\(\displaystyle\lim_{n \to \infty}n\)\(\ne\)\(\infty\)!故此陶哲轩没有错,大错而特错的是民科领袖elim无视威尔斯特拉斯对\(\infty\)和趋向\(\infty\)的定义,自出心裁的定义出一套与现行数学根本不相容的歪理,方得到诸如【无穷交就是一种骤变】、【\(\displaystyle\lim_{n \to \infty}n\)\(=Sup\mathbb{N}\)】……等反现行数学的谬论。这种连最基础的数学基本概念,基本方法都要篡改一通的王八蛋,还有什么脸怼春氏可达!?
回复 支持 反对

使用道具 举报

发表于 2025-10-29 10:37 | 显示全部楼层

        elim,在现行数学中\(\infty=\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1),\)\(N_ε∈N\}\)。所以\(\displaystyle\lim_{n \to \infty}n\)\(\in N\)\((即\displaystyle\lim_{n \to \infty}n\)\(\to\infty)\)!但\(\displaystyle\lim_{n \to \infty}n\)\(\ne\)\(\infty\)!故此陶哲轩没有错,大错而特错的是民科领袖elim无视威尔斯特拉斯对\(\infty\)和趋向\(\infty\)的定义,自出心裁的定义出一套与现行数学根本不相容的歪理,方得到诸如【无穷交就是一种骤变】、【\(\displaystyle\lim_{n \to \infty}n\)\(=Sup\mathbb{N}\)】……等反现行数学的谬论。这种连最基础的数学基本概念,基本方法都要篡改一通的王八蛋,还有什么脸怼春氏可达!?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-10-29 11:05 | 显示全部楼层
搞不懂主贴的子丑寅卯就算推翻主贴了?哈哈哈哈
\(\because\;\underline{\lim} n=\underset{n\in\mathbb{N}}{\sup}\underset{\overset{_\,}{k\ge n}}{\inf} k{\small=\sup\mathbb{N}}\ge\overline{\lim} n.\) 对不等式链
\(n\le{\small \dfrac{10^n}{n}}\le 10^n\le \sup\mathbb{N}\;(\forall n\in\mathbb{N}_+)\)关于\(n\)取极限\(\\\)
得 \(\displaystyle\sup{\small\mathbb{N}}=\lim_{n\to\infty}n= \lim_{n\to\infty}{\small\frac{10^n}{n}}= \lim_{n\to\infty}10^n=\sup{\small\mathbb{N}}\)
(这里使用了极限的保序性,也可称为推广的夹逼定理)
在分析中这里的\(\sup\mathbb{N}\)就是广义实数\(+\infty\).

春霞这把年纪不仅沒懂如此简单道理,  还鼓吹伪命题
\(\color{red}{\displaystyle\underset{\;}{\big(\lim_{n\to\infty}\frac{\small 10^n}{n}=\infty\big)}\implies(\lim_{n\to\infty}10^n>>\lim_{n\to\infty}n})\)

\(\therefore\qquad\qquad\)春霞畜生不如.
回复 支持 反对

使用道具 举报

发表于 2025-10-29 14:08 | 显示全部楼层

        elim,在现行数学中\(\infty=\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1),\)\(N_ε∈N\}\)。所以\(\displaystyle\lim_{n \to \infty}n\)\(\in N\)\((即\displaystyle\lim_{n \to \infty}n\)\(\to\infty)\)!但\(\displaystyle\lim_{n \to \infty}n\)\(\ne\)\(\infty\)!故此陶哲轩没有错,大错而特错的是民科领袖elim无视威尔斯特拉斯对\(\infty\)和趋向\(\infty\)的定义,自出心裁的定义出一套与现行数学根本不相容的歪理,方得到诸如【无穷交就是一种骤变】、【\(\displaystyle\lim_{n \to \infty}n\)\(=Sup\mathbb{N}\)】……等反现行数学的谬论。这种连最基础的数学基本概念,基本方法都要篡改一通的王八蛋,还有什么脸怼春氏可达!?
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-10-29 14:50 , Processed in 0.090276 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表