|

楼主 |
发表于 2011-4-21 22:03
|
显示全部楼层
[原创]哥德巴赫猜想真理性之证明(新版)
2º-2. 若当 k=(2ij+i+j)∈{2ij+i+j/i,j∈N+}时 则有二假设推论
假设推论① 2ij+i+j>m>1 所假设的两个素数{1+2m}>3、
{3+2(k-m)}={3+2((2ij+i+j)-m)>3
证 :
由假设及最小奇素数为3的事实知:{1+2m}≥3,{3+2(k-m)}≥3
则k≥m≥1
当k=2ij+i+j时,由于{1+2k}={1+2(2ij+i+j)}={(2i+1)(2j+1)}
表不小于9的奇合数,而由假设知{1+2m}为素数
∴2ij+i+j≠m 再由上知k=2ij+i+j>m
另由假设知{3+2(k-m)}={3+2((2ij+i+j)-m)}表素数
而{3+2((2ij+i+j)-1)}={(2i+1)(2j+1)}表奇合数
故,当k=2ij+i+j时,m≠1否则与假设相矛盾 ∴m>1
∴ k=2ij+i+j>m>1
∴{1+2m}>3,{3+2(k-m)}={3+((2ij+i+j)-m)}>3
证毕 .
假设推论② 2ij+i+j≠m+3q q∈N+ {1+2(m+3q)}表大于9的素数
证 :
由假设推论①知{3+2(k-m)}={3+2((2ij+i+j)-m)}表大于3的素数,而{3+((m+3q)-m)}={3(1+2q)}表奇合数
故2ij+i+j≠m+3q,而{1+2(2ij+i+j)}={(2i+1)(2j+1)}表不小于9的奇合数,而由于2ij+i+j≠m+3q
∴{1+2(m+3q)}不能表不小于9的奇合数 故{1+2(m+3q}只能表大于9的素数
证毕 .
---此贴原文,特为不自重者211.98.24*、重庆麻辣火锅等一干人贴出、让其与白痴人自语的“由k≠ m+3q、k=2ij+i+j推导出2ij+i+j≠ m+3q,用k表{2ij+i+j/i,j∈N+}集内任一元素,这是错误的”的说法进行比对的。
朗朗乾坤,日月昭昭。孰真孰假,孰食孰屎,自在良心。无情的历史会证明一切的。
|
|