数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 歌德三十年

我对猜想命题的创新描述与证明

[复制链接]
 楼主| 发表于 2011-4-1 18:20 | 显示全部楼层

我对猜想命题的创新描述与证明

回心有一只歌等无脸人:您对我文的质疑与问题就如同您对埃氏筛法的解释一样。本来埃氏筛法世人皆明。可是经过您自以为是地解释,埃氏筛法便变了味---被抹了屎喷了粪---不是那么回事了。你对我文的质疑从来就是先加以自以为是地扭曲抹黑,然后再加以质疑与批判。我对此曾对你多次提出劝戒与抗议---“对我文的引述要原原本本,不要动一笔一划”可你就是改变不了你对我文先加以自以为是地扭曲并抹屎喷粪,后加以质疑与批判的天性。我怎么可能回答已被你扭曲并抹了屎喷了粪的问题呢!?
现正式回答你上贴的也被你扭曲抹黑了的一个看似小、实则大的问题。“你又说什么你那个狗屎命题公式中的n、m都不是变量了,你为什么不给出解释?!”---第一,我从未说过我命题中“n、m”都不是变量;第二,我有证据证明你曾说过“n、m”是两个变量;第三,我文原命题“形如 2(n+2) n∈N+ 都能找到一个不大于n的正整数m∈CN+{2ij+i+j/i,j∈N+}
使得:2(n+2)={ 1+ 2m }+{3 + 2(n-m)}  
                   素数            素数                   成立 ”
已对“n、m”说得清清楚楚、明明白白---只有白痴才弄不懂。
“知之为知之,不知为不知,是知也”,“人贵有自知之明”---不要再不懂装懂了。不懂装懂、自误误人,丢尽你八辈祖宗人了!!!
另,再回答您上贴的一个可笑的反问:“我问他能找比梅森素数2^43112609 -1 大的素数吗?”我再次坚定地回答:能,一定能。因为素数的存在理论上是无限大的,比梅森素数2^43112609 -1 大的素数一定存在---“存在即能找到”---但不是此刻,而是未来。理性思维的人都明了这一点。白痴是搞不懂得。

 楼主| 发表于 2011-4-3 23:02 | 显示全部楼层

我对猜想命题的创新描述与证明

顶上去请豫先生参阅。
 楼主| 发表于 2011-4-5 16:49 | 显示全部楼层

我对猜想命题的创新描述与证明

“造素数表必须先有一些小素数,而且必须首先定义什么样的数是素数”---那些小素数2,3,5,7,...p是如何得来的,是您天生就知之?p多大是大,多小是小,其界限在哪?请花齐空大师“文明”回答。无须心哥无脸人自以为是地涂脂抹粉和喷粪。
王元结舌瞪眼瞧,心哥狂吠冲天嚎。
马氏奇合数定理: 若m∈{2ij+i+j|i,j∈N+} 则{1+2m}必表不小于9的奇合数
证明:令m=2ij+i+j (i,j∈N+)
显然(2ij+i+j)∈{2ij+i+j|i,j∈N+}
故m∈{2ij+i+j|i,j∈N+}
那么 {1+2m}={1+2(2ij+i+j)}={(2i+1)(2j+1)}
显然 {(2i+1)(2j+1)}表不小于9的奇合数
证毕.
马氏奇素数定理: 若m∈CN+{2ij+i+j|i,j∈N+} 则{1+2m}必表奇素数
证明:设m∈CN+{2ij+i+j|i,j∈N+}
则由 CN+{2ij+i+j|i,j∈N+}【*】{2ij+i+j|i,j∈N+}={}和(2ij+i+j)∈{2ij+i+j|i,j∈N+}知 m≠2ij+i+j ∴ {1+2m}≠{1+2(2ij+i+j)}={(2i+1)(2j+1)}而{(2i+1)(2j+1)}表不小于9的奇合数 ∴{1+2m}不能表不小于9的奇合数 故而只能表奇素数
证毕.
注释:集{2ij+i+j|i,j∈N+}={4,7,10,12,13,16,17,19,......}
        集 CN+{2ij+i+j|i,j∈N+}={1,2,3,5,6,8,9,11,......}
        集N+={1,2,3,4,5,6,7,8,9,10,......}
 楼主| 发表于 2011-4-11 22:51 | 显示全部楼层

我对猜想命题的创新描述与证明

回复:沪上兵,请看你给我的回帖。
“2º-2.      若当      k=(2ij+i+j)∈{2ij+i+j/i,j∈N+}时 则有二假设推论
......
假设推论② 2ij+i+j≠m+5q q∈N+      {1+2(m+5q)}表大于9的素数
证 :
由以上假设知{5+2(k-m)}={5+2((2ij+i+j)-m)}表素数,而{5+((m+5q)-m)}={5(1+2q)}表奇合数
故2ij+i+j≠m+5q,而{1+2(2ij+i+j)}={(2i+1)(2j+1)}表不小于9的奇合数,而由于2ij+i+j≠m+5q
∴{1+2(m+5q)}不能表不小于9的奇合数 故{1+2(m+5q}只能表大于9的素数
证毕 .
      以上过程有没有哪个地方不符合你的证明逻辑?”
你的帖子,没有哪个地方符合我的逻辑!你的帖子,没有哪个地方符合我的逻辑!!你的帖子,没有哪个地方符合我的逻辑!!!
请问我的原文中,存在“假设推论② 2ij+i+j≠m+5q q∈N+      {1+2(m+5q)}表大于9的素数”这样的文字吗?请问我的原文中,存在“假设推论② 2ij+i+j≠m+5q q∈N+      {1+2(m+5q)}表大于9的素数”这样的文字吗??
那些文字完全是打着已被你这个小丑扭曲了的作者思路的幌子,自以为是地臆造杜撰、无中生有的怪胎---与我的论文有什么关系?将自己臆造杜撰出来的怪物强加于人是何道理?还恬不知耻的说“礼貌待你”---一副沪上流氓的嘴脸。实话说,你的学识表现不值尊重。你也与心哥等无脸人一样---是个给人抹屎喷粪的天才。
沪上兵与窗前柳枝、心哥等无脸人---是一丘之貉。都担不起“尊重”二字的分量。
 楼主| 发表于 2011-4-13 21:42 | 显示全部楼层

我对猜想命题的创新描述与证明

哥猜原题是:不小于6的偶数都可表二奇素数之和。用最通俗的数理语言描述为:形如2(n+2)
能够找到一个不大于n的正整数m 使得2(n+2)={1+2m}(素数)+{3+2(n-m)}(素数) 成立.
其证明请详见本吧《哥德巴赫猜想真理性之证明》一文。
哥猜问题近三百年不得解决,其主要原因是人们把原本朴素简单的命题复杂化了。越搞越复杂以致陷入泥潭。提请初涉者务必注意这一点,千万不要步陈景润氏后尘。
谢谢。


 楼主| 发表于 2011-4-16 18:07 | 显示全部楼层

我对猜想命题的创新描述与证明

各位网友:
数学归纳法所根据的原理是自然数的一个最基本的性质---最小数原理.
(最小数原理)定理 任意一个非空集中,必有一个最小数.

设N是一个自然数的非空集.在N中任意取出一个数m.从1到m共有m个自然数,所以N中不超过m的数最多有m个.因为这是有限个数,所以其中有一个最小数.用k表示这个最小数.k对于N中不超过m的数来说是最小的,而N中其余的数都比m大.所以k就是N中的最小数.
证毕
(数学归纳法原理)定理 设有一个与自然数n有关的命题.如果
1°当n=1时命题成立;
2°假定n=k时成立。则n=k+1时命题也成立;那么这个命题对于一切自然数n都成立.
证(反证法)略.
供大家参考.
 楼主| 发表于 2011-4-30 22:44 | 显示全部楼层

我对猜想命题的创新描述与证明

各位网友:“在研究寻找到能破解哥德巴赫猜想问题的相应理论和方法之道上,我国数学家陈景润的(1+2)最靠近(1+1),则为成就最高最大!!!”是的,三十年前我也是这个认识。那时是因为对哥猜的了解无多和出于对前辈大师们的盲目崇拜才有的这种认识。随着时光的流逝与自己学术水平的逐步提高,我对自己原先的认知也慢慢发生了变化。哥猜这么一个朴素简单的、连中学生都懂得的命题,为什么证明起来这么难、又这么复杂,二百多年都不得解决。是不是证明的理论与方法存在问题?于是,我走上了彻底摈弃前辈们证猜路线的创新之路---再无彷徨一直向前。经近三十年的熬煎,终于寻得“马氏分流归纳法”并铸就我心目中的明珠《哥德巴赫猜想真理性之证明》一文。
“沉舟侧畔千帆过,病树前头万木春。”这是历史发展的必然!!!
 楼主| 发表于 2011-5-1 17:41 | 显示全部楼层

我对猜想命题的创新描述与证明

各位网友:
有人说“数学归纳法是针对连续的自然数而言!”---说的没错。不过,数学归纳法原理定理中所说“ 2°假定n=k时命题成立 则n=k+1时命题也成立”---就是假定n等于某一自然数k时命题成立 则n=k+1时命题也成立---详见人民教育出版社1979年再版的张禾瑞 郝鈵新编《高等代数》上册第14页第13行文字。既然k是某一自然数,当然k就可以分流为---k=m∈CN+{2ij+i+j|i,j∈N+}和k=(2ij+i+j)∈{2ij+i+j|i,j∈N+}两种情况,并分别论证两种情况下n=k+1时命题都成立。所以说我的“马氏分流归纳法”不韪数学归纳法原理定理的规范。
将正整数集N+创新地分解为{2ij+i+j|i,j∈N+}和CN+{2ij+i+j|i,j∈N+}这两个不相交而互补的子集是“马氏分流归纳法”的理论基础。“马法”只是对经典数学归纳法的改造与创新,是数学归纳法的一个变种。她扩充了经典数学归纳法证题的功能。她在我的论文《哥德巴赫猜想真理性之证明》中得到成功的运用。
“马法”亦可应用于用经典法即可圆满证明的命题---不过那是“牛刀杀鸡”,是“脱了裤子放屁---白费了一道手续”罢了。请详见《马氏分流归纳法证题示例》一文。
诚请斧正。
 楼主| 发表于 2011-5-2 08:53 | 显示全部楼层

我对猜想命题的创新描述与证明

我看不懂陈氏定理。陈的”1+2“与”1+1”风马牛不相及。不懂也罢,免得耗费生命。我就是因看不懂“1+2”才走上标新立异证哥猜之路的。
同样,陈氏还魂亦会对马氏分流归纳法瞪眼瞧的。
 楼主| 发表于 2011-5-10 15:50 | 显示全部楼层

我对猜想命题的创新描述与证明

回LLZ2008:您好。请看以下我原文摘抄:
假设推论二: 2ij+i+j≠m+3q q∈N+{1+2(m+3q)}表大于9的素数
证 :
由假设推论一知{3+2(k-m)}={3+2((2ij+i+j)-m)}表大于3的素数,而{3+((m+3q)-m)}={3(1+2q)}表奇合数
故2ij+i+j≠m+3q,而{1+2(2ij+i+j)}={(2i+1)(2j+1)}表不小于9的奇合数,而由于2ij+i+j≠m+3q
∴{1+2(m+3q}不能表不小于9的奇合数 故{1+2(m+3q}只能表大于9的素数
证毕.
我上述原文就已经证明了“k=2ij+i+j时2ij+i+j≠m+3q即k=2ij+i+j≠m+3q”怎么可能还会出现“k=2ij+i+j=m+3q”的分流情况?
“您的第二次分流存在k=2ij+i+j=m+3q  q∈N+.这一流,不是我要加上,而是您剔除了“k=2ij+i+j=m+3q q∈N+”,不剔除这种情况,您的证明是不是就是错的?
我一般不随便质疑。”请问,我的原文存在您所质疑的那一流的文字吗?那所谓的一流您的帖子说的再明白不过了---“不是我(LLZ2008)要加上去的,而是您(马氏)剔除了”。我怎么可能剔除根本就不存在的文字呢?---这是什么道理?请不要强加于人!
请问,您有什么理论根据说“您的第二次分流存在k=2ij+i+j=m+3q  q∈N+.这一流”?是您自以为是的杜撰吧!?还是给我扣您的spz?
“我(LLZ2008)一般不随便质疑”---我(马氏)一般没这么耐心给您的质疑作答!
请您静下来“悟”一下,假如存在“k=2ij+ij=m+3q这一流”,是不是会导致出现“{3+2(k-m)}素数={3+2((2ij+i+j)-m}素数={3+2((m+3q)-m)}={3(1+2q)}奇合数”的矛盾?
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-9 14:20 , Processed in 0.088173 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表