|
|
设 x^3+2x^2+3x+4=0 的三个根为 α,β,γ ,求 α^5+β^5+γ^5
我的简单做法:设a(n)=x^n+y^n+z^n,则a(n+3)=(x+y+z)a(n+2)-(xy+yz+xz)a(n+1)+xyza(n),由韦达定理得
a(n+3)=-2a(n+2)-3a(n+1)-4a(n),结合 a1=-2,a2=(x+y+z)^2-2(xy+yz+xz)=-2,a3=x^3+y^3+z^3=(x+y+z)[(x+y+z)^2-3(xy+yz+xz)]+3xyz=-2,
所以 a4=-2a3-3a2-4a1=18,
a5=-2a4-3a3-4a2=-22 |
|