|
本帖最后由 王守恩 于 2019-10-26 11:29 编辑
我来试试(借着此题还是想推销 “利用三角函数解题”)
设圆心为O,连接OB,OE,OC,OF
1,先找角度。
∠OCA=∠OCB=∠OEF=∠OFE=a
∠OBA=∠OBC=∠OGF=a+b
∠OAB=∠OAC=90-2a-b
2,再找长度。
OE=OF=sina,CE=CF=cosa
OE=sin(a+b)sina/sin(a+b)
OB=sina/sin(a+b)
OF=sin(a+b)sina/sin(a+b)
OG=sinasina/sin(a+b)
3,答案自动就来了。
(BG)^2=(OB)^2+(OG)^2-2*(OB)*(OG)*cos∠BOG
=(sina/sin(a+b))^2+(sinasina/sin(a+b))^2-2*(sina/sin(a+b))*(sinasina/sin(a+b))*sina
=(sina/sin(a+b))^2+(sinasina/sin(a+b))^2-2(sinasina/sin(a+b))^2
=(sina/sin(a+b))^2-(sinasina/sin(a+b))^2
=(OB)^2-(OG)^2 |
|