|
|
正立方体对角线与(x,y,z)夹角为αβγδ,求(cosα)^2+(cosβ)^2+(cosγ)^2+(cosδ)^2
设正方体各顶点A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0)
A';(0,0,1),B';(1,0,1),C';(1,1,1),D';(0,1,1)
则对角线AC';=(1,1,1),BD';=(-1,1,1),CA';=(-1,-1,1),DB';=(1,-1,1),容易知道上述各向量模均为√3
而它们与v=(x,y,z)的数量积分别为x+y+z,-x+y+z,-x-y+z,x-y+z)
因为|v|=√(x^2+y^2+z^2)
所以cosα=AC';*v/(|AC';||v|)=(x+y+z)/(√3)*√(x^2+y^2+z^2)
既 cosα)^2=(X+Y+Z)^2/[3*(x^2+y^2+z^2]
同法: cosβ)^2=(-X+Y+Z)^2/[3*(x^2+y^2+z^2]
(cosγ)^2=(-X-Y+Z)^2/[3*(x^2+y^2+z^2]
(cosδ)^2=(X-Y+Z)^2/[3*(x^2+y^2+z^2]
所以(cosα)^2+(cosβ)^2+(cosγ)^2+(cosδ)^2
=[(X+Y+Z)^2+(-X+Y+Z)^2+(-X-Y+Z)^2+(X-Y+Z)^2]/[3*(x^2+y^2+z^2]
=(4x^2+4y^2+4z^2)/[3*(x^2+y^2+z^2]
=4/3
|
|