数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 9937|回复: 11

大数学家希尔伯特的“无穷旅馆”是否为数学诡辩?

[复制链接]
发表于 2008-8-28 17:50 | 显示全部楼层 |阅读模式
十九世纪未,德国数学家康托尔所创建的集合论被誉为是构建数学大厦的基础。
  然尔,就在康托尔的集合论中,也产生了许多令人匪夷所思的数学结果,例如:所有自然数的数量与所有偶数的数量哪一个更多?依照人们的直觉来说,所有的偶数只是所有自然数的一部分,那当然是所有的自然数多于所有的偶数,但康托尔却创建了一种一一对应的方法,说明所有的偶数可以和所有的自然数之间建立起一一对应的关系,于是所有的自然数与所有的偶数的数量相等。  
关于这种无穷的问题,著名数学家希尔伯特的一则小故事给予了最好的说明:某旅游胜地有一家旅馆,内设有穷个房间。由于是旅游旺季,所以,所有的房间都已客满。这时,来了位客人想订个房间。“对不起,”店主说,“所有房间都住满了”。客人无可奈何地来到另一家旅馆。这家旅馆与别的旅馆并无多大不同,只是房间数不是有穷而是无穷多个,号码为1、2、3…… 这位客人到来时,所有房间也已住满,但他疲惫已极,坚持要住下。旅馆老板只得耐心劝说:“满了就是满了,非常对不起!”正好这时候,聪明的老板的女儿来了。她看见客人和她爸爸都很着急,就说:“这不成问题!请每位房客都搬一下,从这房间搬到下一间。”于是,1号房间的客人搬到2号,2号房间的客人搬到3号……依次类推。于是,这位客人住进了已被腾空的1号房间,而原来旅馆内的所有客人也全都有房间可住。  
看完了大数学家希尔伯特的这个故事,产生了一个疑问:老板的女儿让无穷旅馆内的每一位客人都从原房间搬到下一号的房间中,这便是一个无穷交换的过程:即1号房间的客人交换到2号房间,2号房间的客人交换到3号房间,3号房间的客人交换到4号房间........
那么请问:这种交换的过程能不能终止?
对于这个问题,只能有两个答案:要么是这种交换的过程能够终止,要么这种交换的过程不能终止。
下面来看这两个答案分别会产生什么样的结果:
(1):若这种交换的过程能够终止,则必然会终止于无穷旅馆的最后一个房间,但是根据无穷的概念,因为旅馆内的房间是无穷多的,所以是不会存在最后一个房间的,所以这种交换的过程是不能终止的。
(2):若这种交换的过程不能终止,则:并不是所有的客人全都有房间可住,而是:总有一个客人没有房间可住,即:当1号房间的客人搬到2号房间时,2号房间的客人没有房间可住,2号房间的客人搬到3号房间时,3号房间的客人没有房间可住,3号房间的客人搬到4号房间时,4号房间的客人没有房间可住......
   请注意:“总有一个客人没有房间可住”与“所有的客人全都有房间可住”并不是同一个概念。
因此说大数学家希尔伯特的“无穷旅馆”其实质上就是一个数学诡辩。

发表于 2008-8-28 18:08 | 显示全部楼层

大数学家希尔伯特的“无穷旅馆”是否为数学诡辩?

房间数 X
    X=(2r)^2,r是单位圆的半径,r=1,2,3,,,
    事实是每个房间都住上了客人(单位)!
    不可能腾出房间!
因此是谬论!
 楼主| 发表于 2008-8-29 09:08 | 显示全部楼层

大数学家希尔伯特的“无穷旅馆”是否为数学诡辩?

若希尔伯特的这个故事是个谬论,则同样说明康托尔的集合论同样是建立在谬论的基础之上的。
我从一开始就坚决的反对集合论,这个立场以后也决不会改变。
发表于 2008-8-29 11:24 | 显示全部楼层

大数学家希尔伯特的“无穷旅馆”是否为数学诡辩?

对!
   按着单位论!它就是谬论!
   在纯粹数学中"数"就是单位构成的!
   所有单位均在单位圆中!
   1.基本单位元:r=1,
   2.基本  单位;R=2r=2,,,;h=√2r
   3.单      位:S1=R^2=(2r)^2=4r^2=4■,(r^2=1^2=■)
   4.二次域单位:S2=πr^2=(3+√2/10)■
其中r=1,2,3,,,n,,,
    则任意单位圆的外切正方形所构成的单位的个数是:
   5. Sn=(2r)^2
发表于 2008-8-29 16:32 | 显示全部楼层

大数学家希尔伯特的“无穷旅馆”是否为数学诡辩?

简直就是白痴!
无非把N∪{-1}与N做一一对应,用一个无穷旅馆来形容,你就看不懂!
发表于 2008-9-11 23:23 | 显示全部楼层

大数学家希尔伯特的“无穷旅馆”是否为数学诡辩?

[这个贴子最后由hxl268在 2008/09/11 11:24pm 第 1 次编辑] 50字纠正五千年重大错误:任何自然数n<自然数n+1 ——续50字推翻五千年科学“常识”:无最大自然数 黄小宁 (广州市华南师大南区9-303第二信箱 邮编510631) (此文初稿载:科技信息(学术版),2008年第21期) [摘要]凡有首项的无穷数列的各项都能配上序号。设正整数集N={1=1号数,…,n= n号数,…}且1号是最小序号,则其真扩集K={0=m号数,1号数,…, n号数,…},显然有无穷序列1号,2号,…,m-1号,m号。显然:m是N以外的>所有自然数n的超自然数,m-1是与1相隔无穷多个n的最大自然数——5千年来一直不识与否定这类无穷大数及其倒数而误以为“有首项的无穷数列必无末项”的重大缺陷与错误,使级数论有概念性错误而一直误以为无限循环小数是有理数;使康脱脱离健康误入歧途铸成百年更重大错误:集论;使“精确”的百年极限论是自相矛盾的学说而根本不能化解无穷小危机。显然K有m个数。因K外还有负整数、正负分数等等,故表示“多少个”的数n的全体中N 只占极小一部分。从各个方面、角度深入分析论证了:客观存在用而不知的无穷大自然数是无穷多个1的和而与1之间有无穷多个自然数;无穷级数y一般都代表数,只不过有的y是用而不知的无穷大数罢了。 [关键词]中学数学重大错误;最大自然数及超自然数>一切自然数;明否暗用的无穷小、大正数;推翻自然数公理和百年集论;级数论有概念性错误; 有首、末项的无穷数列;0.999…<1不是有理数;化解几百年无穷小危机 一、导言:希尔伯特对“无穷”的错误认识——编序号常识及分形几何显示存在有首、末项的无穷序列 “如果A是可数无限集,那么…A的元素就可以用自然数来编号,每个自然数恰好用到一次。”(田开璞《现代科学数系论》10页)设有无穷多个一房只住一人且都住了人的客房,“客房号码可以用自然数一个个的标出来,即用1号,2号,3号,…标出来,所有自然数无一遗漏,…”(欧阳光中《集合和映射》58页),住在n=1,2,…号房的人称为n号人。现在又来了个m号客人(m号显然>之前的所有序号(无0与负数号),故显然有无穷序列1号,2号,…,m-1号,m号。),希尔伯特以为让其住到1号房去,让:1号人移至2号房,2号人移至3号房,…就能使所有人都能住上房间。殊不知N以外的序号数m始终存在即互调房间不能改变人比房间多这一事实!关键是m>所有自然数n即>所有房号数!让m-1号人移至哪号房去住?症结是希氏不知道全部房间号和人分别都能排成有首、末项的无穷序列。 关键是以康脱之道纠康脱百年之错:各n所有自然数n的超自然数!即L′比L多了个L没有的m号位置使L′的位序数n的全体组成的集是N的真扩集N※≠N。 边长为1=1/3n的等边三角形d由3条直线段连接而成,A——B是d的一条边,将其变为相应的折线段就成为分形几何中边长为1/3n(n >“任意给定的正数”M)的无穷多边形:柯赫雪花闭折线的1/3部分:由无穷多等长的无穷短直线段连接而成的折线段AB,其长度(4/3)n>M。由AB的生成过程及其生成元_∧_可知将AB的A点及B点附近放大足够大倍就能看到:所有直线段的所有端点可排为首项为点A,第二项是AB上与点A连接为直线段的点,…,末项为点B的无穷点列。将AB“拉直”就成为可还原为AB的有两端点的无穷长直线段。 如[1]所述,近似计算常识:代表正整数的y=100…0n +n=主要部分100…0n + 次要部分n ≈100…0n + 0>>n=1,2,3,…(所有n组成Q) 是说误差余项n→∞与y的主部相比实在是总距0太近了以致于可视其为0而忽略,即说Q的各元n相比下全都是≈0的极小正整数——意味着Q外有自然数y>>Q的所有数n。而且有代数常识:式中y必可>>右端数列的一切n而代表Q外的自然数。然而5千年数学却一直断定此可视其为定数0而忽略的变数n≈0可取一切非0自然数——这就构成了重大自相矛盾(数学危机)。症结是下节文证明的:Q只是N的沧海一粟。 不明此真相的教师根本无法从数、数量关系的高度上来阐明在数学的理论与应用中占极重要地位的近似计算理论的原理而只能不知其所以然地搞盲从。若上述误差项可取一切自然数就绝对不可将其忽略。 康脱将基本数列:无穷多个各不相同的非0数:1010,109,108,…,1011/10n,…定义为一个数0。“皇帝新装”中的小孩一定指出这是与数学所要求的严密精确性背道而驰的离题万丈的错误。但大人们却为何不察此非常离谱的明换概念的错误?小孩也知道无穷多个1的和h=1+1+1+…与同样多个-1的和j=-h的代数和 h-h=0,大人们却为何反而一致误认为级数h+j不代表数而无意义?原因都是受到了重大错误知识的严重伤害 与误导。 数列A :0.1,0.01,0.001,…,1/10n,…的充分后的项都是<“任意给定”的正数ε的正数——本文第六节揭示标准分析从前门拒绝了无穷数从而“化解了无穷小危机”,然而又从后门“神不知、鬼不觉地溜进”了明否暗用的起决定性作用的无穷小正数<ε,这是其与非标准分析等价的原因。拨乱反正地明用无穷数后微积分就易学易教了。例如一长度是有穷数的弧由无穷多部分组成,各部分都几乎是相应的长度是无穷小正数的直线段,所有直线段的总长与某有穷数a只有一无穷小数的差别,显然a就是弧的长度;一常观曲面块由无穷多部分组成,各部分都几乎是相应的平面块,…。这种借助有穷数之外的无穷小数(其倒数是无穷大数)求有穷数的思想方法是实践远远走在理论前面的对无穷数只有感性认识的非常直观明了的200年无穷小分析(相应的分析力学中有起决定性作用的无穷小数位移概念)的思想精髓、根本大法;本文揭示否定此精髓的百年标准分析自相矛盾,从而极难学难教。 本文证明了无穷数是客观存在而非虚构的数,从而化解了第二次数学危机,给行之极有效的无穷小分析法提供了理论依据。 从力学史来看“给质点一虚位移以求出…”其实是“…一无穷小位移…”,只是因有无穷小危机而不得不改称为…罢了。其实要清楚地而不是模糊不清地论述“变分法”就不能不说虚位移εh(t)中的ε是“无限小的常数”(卢圣治,变分法初步,大学物理,1988(4),39页)。丢掉无穷数与丢掉无理数一样都使数学…。 二、{1,2,3,…,n,…}不一定是正整数集N——有无穷大自然数 奇数集A ={1,3,5,…,2n -1,...}(n=1,2,3,…) 偶数集B ={2,4,6,…,2n,...}的各元2n的对应数n的全体组成C C ={1,2,3,…,n,…}=值域为B的y=2n的定义域=相应的Q 显然无穷集A~B~C=Q。问题是N=A∪B~A吗?N=C吗?显然若N≠C则百年集论不能成立。 证明N≠C:①一目了然的“以一对二”的“一二对应”:C的各元n的头上都有两个对应数2n、2n-1 且所有对应数组成的集是N说明N的元比C的元多一倍使C只能是N的1/2部分——57个字符推翻了百年集论、推翻了自有直线函数概念几百年来一直认定的“y=2n的定义域C=N”、证明了N内有>C的一切n的无穷大正整数n与1相隔无穷多个n,即C有上界∈N;同时证明了A、B各占N的一半。 ②显然N的所有偶数元2n与B~C的各元2n一一配对:2n←→2n后就将B的元都配光了,还剩下所有奇数元2n-1都无数2n∈B与之配对,说明N的元多于B~C的元。故当然C≠N!③先对B的元都配上序号(后配号必>前配号):2=1号数,4=2号数,…,2n= n号数,…,所有序号数n组成C;然后再对A的元1配上序号:1=e号数;显然e是C以外的>C的一切n的自然数,故C≠N! 形成鲜明对比的“一一对应”:C的各元n都有一个对应数2n且所有对应数组成集B 说明B ~C=Q。 可见上面的A、B、C三行数分别都只是N的一半。显然其中的A、B两行数合并为一行数L时,~L的Q才=N=C∪(N-C)。N-C的元n显然都是>C的一切n的无穷大正整数(相应的1/n是无穷小正数),相应的数列A的第n∈N-C项0.00…01是n个小数位的无穷小正数。如[2][3][4]所述,用而不知地失察此类在微积分中起决定性作用的数,使数学自相矛盾频频出现违反语文常识的重大病句(正如2500年前数学家对无理数用而不知一样)从而总难学难教——因为未被“洗脑”的正常人都还有天生拒绝接受自相矛盾学说的本能。 其实无穷小并不神秘而很直观,例如与宇宙相比各星球都是无穷小天体。 代表自然数的y=2n>n=1, 2,3,…(数列所有数n组成C)明确表示有自然数2n>C的所有数n。 显然证明有无穷大正数就证明了有无穷小正数。 “一对一”与“一对多”的重大区别使…: k=100…0是亿亿倍于1的自然数。N由无穷多组数组成:1组(1,2,3,…,k),2组(k+1,k+2,k+3,…,k+k=2k),3组(2k+1,2k+2,2k+3,…,3k),…,n组((n-1)k+1,…,…,nk),…;每一组都有k个数,相应的{1组,2组,…,n组,…}~{1,2,…,n,…}=Q,即Q的各元n都有一组(而非一个!)(第n组)对应数:nk,nk-1,nk-2,…,nk-k+1共k个数且所有对应数组成N——充分证明了N的浓度k倍于Q 的浓度,即N的元比Q的元多k-1倍,Q只占N的1/k是N的沧海一粟。 Q外的自然数n>Q的一切n显然是无穷大数。 形成鲜明对比的是Q的各元n都有一个对应数y=100…0n=kn∈N,所有对应数组成的集的浓度就=Q的 浓度。可见中学数学断定y=100…0n的定义域Q=N,是以井代天的重大错误:将N的1/亿亿部分元素组成的Q误为N——犹如说“天有一个井大”。从而使康脱误入百年歧途。以上导言所述的近似计算中人们视变域为Q的误差余项n→∞为0实际上就是不自觉、无意识地纠正了这一搞错变量的变域的最重大根本错误。 三、起码数学常识及分果常识凸显有超自然数>一切自然数——中学数学几百年重大错误: 搞错变量的变域 数轴上的正数与负数一样多。“对于一切(任何)负数x都有y =x+ 0.1>x(可取一切负数)”显然表 示变数y必可>一切负数——由此可知必有非负数>一切负数。同样“对于一切标准正数x都有数y=2x>x>0”明确表示y必可>一切标准正数——由此可知y必可取非标准正数>一切标准正数。 可见如[5]所述,自有直线函数概念几百年来一直公认的中学的“对于一切标准正数x都有标准正数y =2x(或x+1等)>x(其变域D由一切标准正数组成)”是重大病句:有标准正数y>一切标准正数x。若限制y与x都只能取标准正数,则D(包含一切形如x<标准正数2x(或x+1等)的标准正数x)不可包含一切标准正数而在D外必还有“更无理”标准正数x——其对应数2x(或x+1等)>x不可是标准正数而只能是非标准正数。同样,若对于N的一切n都有偶数2n>n,则并非所有的2n都∈N而必有部分2n是超自然数>N的一切n。所以定义域为N的y=2n>n的值域Z~N不是N的真子集,中学数学误以为NÉZ的重大错误使康脱误入百年歧途。 关键是应有中学起码数学常识S:y >(<)x中的y必可>(<)x的变域D的一切数。因为有傻瓜相机也有傻瓜数学:说y>(<)x中的x可取1,2,3这3个数就是说y可>(<)这3个数,说x可一个不漏地遍取D的一切数,就是说代表数的y必可一个不漏地遍比D的一切数x都大(小)而代表D外的数。 要害是对数学表达式所表达的内容不能只有一知半解的肤浅认识,对式中各字母的含义不能只有一知半解。y>x表示对于x的变域X的一切数x都有y >x,以及对于y的变域Y的一切数y都有xn(y的定义域包含一切自然数)——自然数 公理:任何自然数n<自然数n+1是重大病句 :有自然数n+1>任何自然数n。下式 n-1 < 任何自然数n < n+1(注,“任何自然数n>自然数n-1”是病句) 就不是病句,据常识S其明确表示有非自然数n-1<任何自然数n——与你是否认识0与负数完全无关;同样, 其也明确表示有非自然数n+1>任何自然数n——与你是否认识最大自然数完全无关。 N的各元n都有对应数n-1,但并非所有的n-1都∈N;同样,若N的各元n都有对应数n+1,但并非所有的n+1都∈N。非标准分析就认为有N外的非标准自然数即超自然数> N的一切n。 同样“对于任何一个实数x都有对应实数y =x+1>x” ——中学“常识”也是重大病句:有实数y>任何(所 有)实数x。建立在重大病句之上的理论必是自相矛盾的错上加错的更重大错误。 变域是变量所有能取的数组成的集。搞错变量的变域是导致全盘皆错的最重大根本错误。 对占统治地位的集合论,1908年著名数学家庞加莱富有远见卓识、高瞻远瞩地作出极其惊人的超凡越圣的伟大科学预见:“下一代人将把(康脱尔的)集合论当作一种疾病,而且人们已经从中恢复过来了。”(张锦文等《连续统假设》辽宁教育出版社,1988:20)。 N={1,2,…,n,…},-N ={-1,-2,…,-n,…}。 N={1,2,…,n,…}的各元n都有两个对应数±n且所有对应数组成非0整数集Z=N∪-N,表明Z的元比N的元多一倍。故Z ={1,-1,2,-2,…,n,-n,…}(各n都∈N)~Q={1,2,3,…,n,…}中的Q的元n比N的元n多一倍——证明了Q中有一半元素n都是N外的用而不知的超自然数n>一切自然数n, N只占Q~Z的一半。 一人拿一个N筐中的苹果,筐空了还有一半人无果可拿,欲使其也人手一果就必须另外再送那M筐果来,…——此分果常识推翻百年集论揭示有超自然数(下设 -N =F)—— 所谓原集N~它的真扩集:非0整数集Z= N∪F,是说Z的各元n、-n分别都可“拿”到原集N的一 个数n以与之结成一数偶且…。 Z的一部分N~N的所有元n分别都拿到一个原集N的数n以与之结成一数偶(n,n)就拿光了原集N的全部n了,于是Z的另一部分F的各元-n都分不到原集N的任何一个n——76字就证明了Z远不可~N即百年集论不能成立!欲使~N的F的各元-n也都分到(对应)一个表示个数的数n(不可∈N)以与之…,就必须用N外的超自然数n> N的一切n了:Z~N∪M =Q ={1,2,…,n,…}(M的各元n都 >N的一切n)。 可见N有上界!对此,后文还要论述。注,由于事关极重大,作者对本文推翻权威定论发现新数的同一发现都有反复的论证。由否定无穷数到为其正名是数学发展史上的重大转折与飞跃。 综上所述,得革命结论g:凡有首项的无穷序列L必~相应的形如{1,2,3,…,n,…}的集Q,但Q有可能是N的一部分也可能是N的真扩集——包含N及N外的超自然数而不一定=N。 5千年误以为Q必=N使康脱脱离健康误入百年歧途。 四、n定理:形如{1,2,3,…,n,…}=Q的各元n若都有对应数n+1,则其必有最大元q 证1:定义域为Q的代表数的y=n+1> n = 1,2,3,…表示对于式中数列的各数n即对于Q的一切元n都有对应数y=n+1> n,这就一目了然地直接表达有数y>数列的一切数n,即y必可代表Q外的数n+1>Q的一切数,注意到各n都∈Q,故Q外的n+1中的n显然就是Q的最大数q——其后继n+1不∈Q。关键是起码数学常识S:代表数的y可>式中数列的一切n,一个不漏!证毕。 证2:太浅显编序号常识也证实此太惊人真相:先对Q的一切非1数都配上序号:2=1号数,3=2号数,…,n+1= n号数,…(n =1,2,…),然后再对1配上序号:1=b号数。显然有~Q的无穷序列1号,2号,3号,…,b-1号,b号 。b显然是Q的最大数q。证毕。 注!据常识S “Q的任何元n< n+1∈Q”是病句:Q有数n+1> Q的任何元n。 故Q有q个元,其各数可排为一有首、末项的无穷数列。 据n定理上文的C有最大元。推翻了一系列数学定理的获中国教育学会一等奖的文献[6]论证了N有最大元n使比n大的n+1等不∈ N!显然无此发现就绝无本文的发现,正如须先有初等数学然后才能有高等数学一样——科学发展规律不可抗拒。本文是[6]的继续与深化。 各项都有末尾且末尾都是0的数列10,100, 1000,..., 10n,…(极限论断定充分后的项都>“任意给定”的正数M) 具有有穷数列所不具有的特殊性质:由于这是各项均为具体、确定的数10n的无穷数列,故其第n∈N-C(n或是超自然数)项是形如100…00(末尾与1相隔写不完的那么多个0,如1与2之间的实数多得写不完一样。)>M的用而不知的n位无穷大自然数或超自然数。相应的 1,0,0,…,0,0是有首、末项的无穷数列。 狄利克雷:a和b是两个确定的值,x是一个变量,它顺序变化取遍a和b之间所有的值。(李晓奇《先驱者的足迹——高等数学的形成》90页)而a和b之间有无穷多个数。无此正确的感性认识就无高等数学。无穷集[a, b]也有最小、大元。 五、有首项的无穷数列的特点:各项xn都有序号n且必有与首项相隔无穷多个项的项 无穷数集各元都是具体、确定的数。张效先等《无穷级数》(山东教育出版社,1982.9)1页:按…编了号的一列数…称为一无穷数列。故凡有首项的无穷数列的所有数xn都=数列的第n号(位置上的)数。 两数之间有无穷多个数是常见的,例如1与2之间的实数就多得写不完。有穷集Y的任何两元之间都绝对 不能有无穷多个Y的元——此性质不能硬套和强加在无穷集上,在任何无穷同号数集W内必有一元与另一元相 隔无穷多个W的元——此独特性质决定了有首项的无穷数列中必有与首项相隔无穷多个项的项。例如上文的C 以外的数∈N与1之间就有除1外的C的一切n。 “稍有一点头脑的人都不否认:既然1,2,3,…,n,…是无穷数列,那当然就有与1相隔写不完的那么多(即无穷多)个自然数的自然数n,虽然永生不死的人也不可由1写到此n,但此n却是数列中的无穷大自然数,否则就不是无穷数列了。相应的1/n就是无穷小正数。相应的1,2,3,…,n。就是有首、末项的无穷数列[4]。” 六、50字纠正五千年重大错误:整数集无上界无最大元 5千多年数学史上人类最早认识(感性认识)上述N~T={1号,2号,…,n号,…}的各数n,后来才知数学有全部正整数还不够,…,从认识数的顺序来看0是排在所有正整数的后面的:1,2,…,n,…;0(虽然永生不死的人也不可由1写到此0,但人有逻辑推理的能力。);再后来才认识整数列V: 1,2,…,n,…,(紧接在所有正整数n后面的)0(据n定理及[6],N有最大元),-1,-2,…,-n,…一直断定没有序号数n能>N的一切n。 编序号常识:两有首项的无穷数列N={n}、B,若N的一切项都配上序号:第1项1=第1号数,第n项n=第n号数,则B的第1项=两数列的总第m号数即两数列的总第m项,显然m必 >N的一切n。 数列V的各n都=第n号数,0=第m号数,显然:m是>所有自然数n的无穷大序号数,m-1是最大正整数——49个字符极浅显编序号常识推翻了5千年“N无上界无最大元”思想牢笼(建立在此五千年重大错误之上的康脱的集论是错上加错的百年更重大错误——建立在此百年更重大错误之上的理论必是错上加错的更更重大错误)且从一个侧面证明了N有m-1个元。 关键是N的所有元n都=第n号数即都有序号后,再认识一新数a,则与a相配的序号数m必紧接在N的一切n的后面而绝对不可∈N!同样,继a后再认识…,则相应的m+1等都是N外的超自然数>一切自然数n。 数学规定各正整数n都有相反数-n,但没规定各序号数n都有相反的序号数(与号字结合在一起的“n号”中的n称为序号数。序号的起始号是1号,没有第-1号等,即n号没有相反的-n号。)可见序号数n与正整数n是有区别的。是否每一n号都有后继的n+1号?不!有多少个需要编序号的对象就有多少个序号。序号有什么性质是不能由人主观决定的。由1号,2号,…等序号组成的H~无穷数集S,若S外有数,则其序号必>H的一切序号且由此推知H必有最大元。 N的任一无穷真子集E~H=P={1号,2号,…,n号,…},由编序号常识得革命发现:N内必有>P的一切n的无穷大正整数n。 显然~N 的序号集H=T外的序号数n>N的一切n才能定量描述Z包含多少个元素。可见“多少个”并非都能由正整数n表示,正如正方形对角线长等须用无理数表示,有理数全体远远不够用一样。T只是以下U的一部分。 上述Z~H=U={1号,2号,…,n号,…},显然>U的一切序号的U外的无穷大序号才能与1/2,2/3,…中的分数及0相配。可见U有上界及最大元!…有上界!…;可见需重新认识许多无穷集的上界性。 七、不识上述无穷数使人犯非常离谱的常识性错误、使“精确”的极限论是自相矛盾的学说——无限循环小数并非有理数 希尔伯特说数学是“关于无限的科学”(L.兹平《无限的用处》1页,应隆平译)。故在“无穷”上的错误是根本性的错误。小学数学就与“无穷”息息相关。例如小学数学中的0.999…等无穷多个小数位的无限位小数就是无穷多个数相加的和。 数列A:0.1,0.01,0.001,…,1/10n,…(充分后的项都是<ε的正数) 数列B:0.9,0.99,0.999,…,1-1/10n,…(n项必 < n+1项) 如[3]所述:数列A~B的各项均为正数且第n项是n位小数,各项都有末尾且末尾都是1,各末尾外的数字都是0。由于这是各项均为具体、确定的数的无穷数列,故其中必有无穷多各大小不同的形如0.00…01<“任意给定”的正数ε(1与小数点相隔写不完的那么多个0,如1与2之间的实数多得写不完一样。)的无穷多个小数位的用而不知的无穷小正数(其倒数100…00是无穷多个1的和:用而不知的无穷大自然数或超自然数)。然而这却是有头有尾的一串数字。这是数列A区别于相应的有穷数列的根本特性。不明此理者不知何为无穷数列、何为极限论。极限论断定“无穷小数列”A中从某项起以后各项均是<ε的正数,然而其又断定“定量中只有0才是无穷小”,这暗示:任何正数都不能<ε,即“偷偷”地否定有<ε的正数(有的书本直接断定:没有<ε的正数),使其是出尔反尔、自相矛盾的学说,故误以为其化解了..危机,是百年重大误解。详论见[4]。可见有相应的有首、末项的无穷数列0,0,…,0,1。对无穷现象的幼稚认识使数学5千年来一直误以为有首项的无穷数列必无末项。显然数列B中有一类相应的各大小不同的无穷多个小数位的无限位小数0.999…99(无穷多个9)。 不识上述的无穷大的序号数n、自然数n等就使数学无法解释这一明摆着的客观事实而自相矛盾,从而使小学数学也有小学生也能一眼看出的违反起码数学常识的错误。 所以0.999…表示的是一类数而非一个数。 m是上述>N的所有n的序号数,n=k是一无穷大自然数,显然 1=无穷小正数0.00…01+0.99…99(两项都是k位小数) =0.00…001+0.99…999(两项都是k+1位小数) =0.00…0001+0.99…9999(两项都是k+2位小数) …........... =0.00…00…01+0.99…999…9(两项都是k+n位小数) …………… =0.00…00…0…01+0.99…999…9…9(两项都是m位小数) …............ 可见定义0.999…=1是削足适履的常识性错误:定义数列A中的无穷小正数=0——反映出级数 0.9+0.09+0.009+…+…的部分和的极限1与级数的所有项的和0.999…<1是两个根本不同的概念,将其混 为一谈是级数论的概念性错误。 众所周知“数列的极限”与数列本身是两个根本不同的概念,一个数“1=0.999...”与有无穷多个非1数的数列B有天渊之别啊!如[2][3]所述,康脱将无穷多个各不相同的非1数:数列 B以及无穷多个各不相同的正数:数列A,分别定义为一个数1和一个数0,犹如是将包含无穷多颗微尘的宇宙看成是一颗微尘那么荒唐!指鹿为马只是一对一的错误,指无穷多头鹿为一匹马就更是一对无穷多的太离谱重大错误。受其严重误导,参见[7],有教授说:可以把0.999...看成无穷数列B。因1是这个无穷数列的极限,所以有数列B=0.999...=1。——非常离谱的常识性错误:将数列B外的一个数1说成是无穷多个各不相同的非1数的数列B;将“数列B的极限1”与数列B本身混为一谈;将数列B的无限位小数说成是数列B本身。 据极限定义两者若没有减法运算从而没有距离关系,就更谈不上有一者→另一者。数列与非数列有减法运算吗?数列{1,1/2,1/3,…,1/n,…}-5=?可见数列是不能以非数列为极限的! 固定的数列本身不是随n→∞的变化而变的变数即不是n的函数且与数之间没有距离关系。“数列B的极限1”其实是B的项1-1/10n =f的极限=1。而f本身是永远<1的变数0.999…(n个9,n→∞时其→1)而不是常数1。 y→b是说y与b趋于重合相等。实变数y只能与实数而不能与非实数的猫狗趋于重合相等,同样,各项都是固定数的固定数列B本身不是变数,与1没有距离关系,如何能与非数列的1趋于重合相等? 形成鲜明对比的是各项都是变数的随x的取数不同而不同的函数列{n+(1/x)}→不变化的{n}(x→∞时)。 八、最起码科学常识凸显有无穷大自然数、凸显级数论有概念性错误 孙爱霞等《高等数学(中册)》(广东科技出版社,1985.9)61页:…,把数列的所有项按顺序加起来,得到式子…称为无穷级数。5千多年数学一直认为无穷多个数相加是不能完成的。其实这是极片面的错误认识。例如若无穷数集R的各非0元x都有相反数-x∈R,则因其正、负元一样多,故其所有元的代数和=0——小学生也懂的常识。级数y=n(无穷大自然数)个1/n的和=1。 在数学中若a不是数而是无意义的符号,就不可有a-a=0——据此最起码科学常识C,以上导言中的无穷和h+j=0显示h与j都是数!可见有无穷多个1的和的无穷大自然数h!显然级数ch(c是相应的数>1)也是数>h,相应的级数h+1>h及h/2“任意给定的正数”M显然是有意义的与AB的长相对应的无穷大数。固定n,显然y>M随原A——B的变大小而变大小。 参考文献 [1]黄小宁,在超凡越圣的伟人眼中无穷大n总≈0——符合实际的全新数学必取代几千年井底蛙数学[J],科技信息,2008(2):46. [2]黄小宁,再论小学生察觉出小学数学中的常识性错误[J],教育前沿,2007(12):110。 [3]黄小宁,无限循环小数是异于任何已知数的异常数——再论0.999…<1,见:中国高校教育研究•数学•计算机卷[C],北京:中国农业科技出版社,2001.10:629。 [4]黄小宁,再论极限论总难学难教的真正原因:有自相矛盾的百年糊涂话[J],科技信息,2008(1):29。 [5]黄小宁, 极浅显常识揭示数学有极重大根本错误——非创立全新数学不可的原因,见:中国学校教育与科研•数学•计算机卷[C],北京:中国农业科技出版社,2003.5:7。 [6]黄小宁,50字推翻五千年科学“常识”:无最大自然数[J],科技信息,2007(36):31. [7]李毓佩,科学的发现(2)[M],北京:中国少年儿童出版社, 1980: 45-46。 [8]黄小宁,一眼看出有最小、大正数一下子推翻百年集合论、 破解2500年芝诺著名世界难题,发明与创新增刊[C],2006: 125。 电子信箱:hxl268@163.com (l是英文字母)电联:

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2008-9-11 23:25 | 显示全部楼层

大数学家希尔伯特的“无穷旅馆”是否为数学诡辩?

一、导言:希尔伯特对“无穷”的错误认识——编序号常识及分形几何显示存在有首、末项的无穷序列 “如果A是可数无限集,那么…A的元素就可以用自然数来编号,每个自然数恰好用到一次。”(田开璞《现代科学数系论》10页)设有无穷多个一房只住一人且都住了人的客房,“客房号码可以用自然数一个个的标出来,即用1号,2号,3号,…标出来,所有自然数无一遗漏,…”(欧阳光中《集合和映射》58页),住在n=1,2,…号房的人称为n号人。现在又来了个m号客人(m号显然>之前的所有序号(无0与负数号),故显然有无穷序列1号,2号,…,m-1号,m号。),希尔伯特以为让其住到1号房去,让:1号人移至2号房,2号人移至3号房,…就能使所有人都能住上房间。殊不知N以外的序号数m始终存在即互调房间不能改变人比房间多这一事实!关键是m>所有自然数n即>所有房号数!让m-1号人移至哪号房去住?症结是希氏不知道全部房间号和人分别都能排成有首、末项的无穷序列。 关键是以康脱之道纠康脱百年之错:各n
发表于 2008-9-11 23:32 | 显示全部楼层

大数学家希尔伯特的“无穷旅馆”是否为数学诡辩?

谁是真正的白痴?一目了然!!!!!!!!!!!
发表于 2008-9-12 04:53 | 显示全部楼层

大数学家希尔伯特的“无穷旅馆”是否为数学诡辩?

傻瓜,从来不承认自己是傻瓜.
只有聪明的人,(猴精猴精的人)
                            ---- 才总说自己是“傻瓜”.
发表于 2008-9-12 22:09 | 显示全部楼层

大数学家希尔伯特的“无穷旅馆”是否为数学诡辩?

一线天有极为深刻的科学洞察力!形成鲜明对比的是数学爱好者A 太没头脑了!!

     这里的换房是一人从一室出来进入另一室,…,若换房没完没了,则显然永远总是:没空室而又总有一客人在室外。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-7 16:18 , Processed in 0.096400 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表