|
三角形{已知A,B,C}外接最大正三角形边长=k, 是越来越发达的电脑抢了我们的饭碗!
- Table[Maximize[{k, Sin[A*Pi/12]^2 == (x + y - k)^2 - x (y - k),
- Sin[B*Pi/12]^2==(y+z-k)^2-y(z-k), Sin[(A+B)*Pi/12]^2==(z+x-k)^2-z(x-k),
- x > 0, y > 0}, {k, x, y, z}], {A, 1, 4}, {B, A, (12 - A)/2}]//FullSimplify
复制代码
{15,15,150}={{k -> 1/Sqrt[3],
x -> -(1/2) + 1/Sqrt[3],
y -> 1/(2 Sqrt[3]),
z -> 1/2}},
{15,30,135}={{k -> Sqrt[4/3 - 1/Sqrt[3]],
x -> Sqrt[1/39 (16 - 9 Sqrt[3])],
y -> 1/2 Sqrt[3/13 (4 + Sqrt[3])],
z -> Sqrt[1/78 (41 - 6 Sqrt[3])]}},
{15,45,120}={{k -> Sqrt[2/3 + 1/Sqrt[3]],
x -> 1/2 Sqrt[2/3 - 1/Sqrt[3]],
y -> Sqrt[2/3],
z -> 1/Sqrt[2]}},
{15,60,105}={{k -> Sqrt[5/3],
x -> 1/2 Sqrt[37/15 - 4/Sqrt[3]],
y -> (6 + Sqrt[3])/(2 Sqrt[15]),
z -> (4 + Sqrt[3])/(2 Sqrt[15])}},
{15,75,90}={{k -> Sqrt[4/3 + 1/Sqrt[3]],
x -> Sqrt[1/39 (4 - Sqrt[3])],
y -> Sqrt[25/39 + 53/(52 Sqrt[3])],
z -> Sqrt[3/13 (4 - Sqrt[3])]}}},
{30,30,120}={{k -> 2/Sqrt[3],
x -> 1/(2 Sqrt[3]),
y -> 1/Sqrt[3],
z -> Sqrt[3]/2}},
{30,45,105}={{k -> Sqrt[4/3 + 1/Sqrt[3]],
x -> 1/26 Sqrt[52 - 13 Sqrt[3]]
y -> Sqrt[1/78 (41 + 6 Sqrt[3])],
z -> Sqrt[1/39 (16 + 9 Sqrt[3])]}},
{30,60,90}={{k -> Sqrt[7/3],
x -> 2/Sqrt[21],
y -> (3 Sqrt[3/7])/2,
z -> 4/Sqrt[21]}},
{30,75,75}={{k -> 1 + 1/Sqrt[3],
x -> 1/2,
y -> 1/2 + 1/Sqrt[3],
z -> 1/6 (3 + Sqrt[3])}}},
{45,45,90}={{k -> 1 + 1/Sqrt[3],
x -> 1/Sqrt[3],
y -> 1/6 (3 + Sqrt[3]),
z -> 1}},
{45,60,75}={{k -> Sqrt[5/3 + 2/Sqrt[3]],
x -> Sqrt[1/78 (40 - 3 Sqrt[3])],
y -> Sqrt[2/13 (4 + Sqrt[3])],
z -> Sqrt[71/156 + 17/(26 Sqrt[3])]}}},
{60,60,60}={{k -> Sqrt[3],
x -> Sqrt[3]/2,
y -> Sqrt[3]/2,
z -> Sqrt[3]/2}}}} |
|