数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 4741|回复: 3

【原创】 近代数学的困境与发展方向的商探

[复制链接]
发表于 2005-12-13 00:22 | 显示全部楼层 |阅读模式
【原创】 近代数学的困境与发展方向的商探

爱因斯坦说:“科学没有永恒的理论……科学上的重大进步都是由于旧理论遇到了危机,通过尽力寻找解决困难的方法而产生的。我们必须检查旧的观念和旧的理论……只有先检查它们,才能了解新观念和新理论的重要性,也才能了解新观念和新理论的正确程度。”
在数学中,人类除在+、-、×、÷、乘方、开平方等能达到“算术公理的无矛盾性”外,而在开高次方、球形几何等计量中均采用“概率法”或“大约值”的求法。
如,一米长的线段将它绕成圆形,但将圆形逆求成一米长的线段现有的式、法却不能。即1= m=C=3.14…×D≠1=m=C。
在“除法是乘法的逆运算”真理中亦如此。如当m为一大质数或为两个大质数构成的合数时,现用1×m=m为质数式,p.q为合数式。乘向时p.q=m无矛盾性,但逆向除时p和q却成为未知数。
又如a的5次方=m, 但现无高方竖式开方法。即“开方是乘方的逆运算”——真理,但现有的式与法却无法进行逆运算。故在数学上有“四次以上方程没有一般公式解法”(《数学手册》p13),“五次方程的求根公式可能不存在”(高斯、拉格朗日),《论代数方程,证明一般五次方程的不可解性》(阿尔贝),“五次方程是在向人类的智慧挑战”,(拉格朗日)“用代数运算解一般高次方程是不可能的”(高斯、拉格朗日)。
再如,奇数中的质、合数原本真实、客观地存在着,它如同自然数中的奇、偶数的划分般具有规律性。但现理论却认为“2000多年来,直到如今,数学家们都无法找到一个公式把所有的质、(合)数全表示出来”(《数学五千年》p133)。
虚数i在真实中是不存在的,但现使用的古工具使它不能按原貌规律性正确复原,而出现了增、丢根与虚数i,使式、法与规律不符产生矛盾性。
……
鉴于此,本文以“算术公理的无矛盾性”为标准;以康托的“连续统假说”和新的数学分支学科——《数学基础论》的“精确的数理逻辑结构”的数学新方法为依据;探寻了数学史上23个数学难题的成因及解求方式;并对数学思维方式提出了新的见解。
因数学是一切学科的基石,数学理论是一切学科的支柱。随着科技的发展,文明素质的上升,科学上对数学提出了更精密性的新要求。
在20世纪初,人们就发现数学大厦的基础有裂痕。为此,于1900年8月在巴黎举行了第二届国际数学家代表大会。会上提出了23个数学难题,并将“算术公理的无矛盾性”、“连续统假说”作为这些数学难题的总纲与问题之首,呼吁各国数学家们去攻克它。
于19世纪,人们就为修补、重建数学基础作过两次重大的努力。一次是以《罗巴切夫斯基几何学》为起点的非欧几何的出现,使人们这才发现几千年来被奉若神明的欧几里得几何,原来并非关于现实世界空间形式的绝对真理(如俄国的罗巴切夫斯基、匈牙利的亚诺什·波里亚、德国的黎曼等人均否定了欧几里得的“平行公理”的唯一性。并证明与得出了新的“平行公理”:“经过已知直线外的一点,至少有两条直线与已知直线不相交”。而《黎曼几何》干脆否定了平行线的存在性;得出:“在同一平面内任何两条直线都有唯一的交点”。由此又得出另一重要结论:“三角形的内角和大于180度”)。经过数学家们半个多世纪的努力,希尔伯特在1899年完成了《几何学基础》一书,提出了几何的形式化公理体系,并且最终把几何学建立在算术理论的基础上(确切地说,是把公理化几何体系的无矛盾性建立在算术公理无矛盾性的基础上)。
另一次是重建微积分基础的工作。也是经过半个多世纪的努力,数学家们才为微积分建立起有3个层次的梯级理论基础:上层是极限理论,中层是实数理论,下层是集合论。
重建微积分基础的最后一环是实数理论的建立。但是,对有理数、无理数在概念上不加严格的区别,随着数学在近代以来的发展,也暴露出它的理论局限性。随后,数学家们也越来越紧迫地认识到,仅仅满足于对这些数的直观了解,而对它们精确的逻辑结构缺乏清晰的认识,已经妨碍着数学理论的进一步发展。
非欧几何的出现,已经说明把几何建立在依赖直观感觉的基础上是靠不住的;而致力于建立微积分严密基础的数学家们,发现依赖于对实数的直观了解,往往也靠不住。这证明,要弄清实数的连续性,就需要严密地考察它的逻辑结构(如奇数中的质、合数的逻辑结构,各种高次方集合及高次方集合中的数间距数的逻辑结构等。这样才能得到规律性的新公式或指新的工具)。
然而,仅仅事隔巴黎大会2年后,数学基础大厦就受到了一次强烈地震的冲击。人们再一次发现,大厦的基础出现了更大的裂痕;甚至有人认为,整个数学大厦的基石有崩塌的危险——这次危机是由“罗素悖论”引起的。
数学家们刚刚把数学奠立在集合论的基础上,突发现集合论竟然包含着“罗素悖论”这样的矛盾。被弄得无所适从的与其说是悖论中的那个集合A,不如说是正在数学基础大厦上施工的数学家们。著名数学家弗雷格在他的《数学基础》第二巻后记里写道:“对一个科学家来说,最难过的事情莫过于:当他完成他的工作时,一块基石突然崩塌了。当本书的印刷接近完成时,罗素给我的一封信就使我陷入了这样的境地。”希尔伯特也指出:“必须承认,由于悖论的出现而造成的形势是难以忍受的。只要设想一下,每个人曾经学过、教过并在数学中加以应用的定义和演绎的方法,从来都被认为是真理和必然的典范,现在却导致了荒谬;如果连数学思维都是不可靠的,那还能到哪里找到真理和必然性呢?”
数学基础的危机对20世纪初的数学家是一次严峻的挑战,但同时也就蕴涵着数学理论取得突破性进展的可能。数学家们开始探索推理在什么情况下有效,什么情况下无效;命题在什么情况下具有真理性,什么情况下失灵。于是就产生了以寻求规律、探明数理逻辑结构的新的数学分支——数学基础论。
数学家们对数学基础的研究存在很大的分歧,形成了三大流派:以罗素为代表的一派主张把数学奠基在逻辑上,认为数学不过是逻辑的延伸;以布劳威尔为代表的一派认为数学的基础只能建立在构造性的程序上;希尔伯特为代表的一派主张把数学化归为各种形式公理系统。
但这三大流派有一个共同的弱点,就是在哲学上都把数学看成了“纯理性思维的产物。”没有认识到数学的抽象仍然来源于客观物质世界,数学的对象是现时世界的空间形式和数量关系,是非常现实的材料。他们提出的修补数学基础的各种方案,都各有其片面性和不能贯彻到底的地方。
但数学基础三大流派的研究工作推动了数理逻辑的巨大发展。
数理逻辑这门学科的历史可以追溯到莱布尼兹和布尔提出的逻辑代数(也叫布尔代数)。而数理逻辑的全面跃进,还是在三大流派的工作推动下实现的。使数学进入了逻辑学这门研究人类思维形式的规律性的科学领域;它与计算技术、电子技术的结合,又代来了电子计算机的诞生。
虽然“罗素悖论”给数学基础理论造成了危机,但也引出了一系列有意义的新创造。
1950年,著名数学家魏伊尔受美国数学学会的委托,对20世纪上半叶的数学历史进行总结。他写道:“完成这项任务很简单,只要依据希尔伯特巴黎演说中提出的23个数学问题,指出哪些已解决,哪些已部分解决就够了——这是一張航图,过去50年间,我们数学家经常按这張图来衡量我们的进步。”今天,这座大厦的建设者们仍在紧张地劳动,基础仍需加固,楼层仍需加高……【摘引自《数学五千年》】
然而,要解决这些数学难题也非易事,凡研涉过这类难题的人均发现:
1、“哥德巴赫猜想、费尔马大定理等世界著名数学难题是不可能只用初等数论方法而得到证明的。”【陈景润著《初等数论》序言语】
2、“用代数方法解一般五次以上方程是不可能的。”【高斯语《数学五千年》P77】
3、“五方求根式是在向人类的智慧挑战。”【拉格朗日《数学五千年》P213】
4、二次方以上无“笔算开方法”。【史丰收开两位立方法被联合国教科文组织誉为“对开发人脑智能有重要意义,应向全世界推广。”科教片中称“是中国的第五大发明”。】
5、“虚数是由于数学内部的需要而产生的,因一时无法在客观世界中找到合理的解释,总觉它是虚无缥缈的,于是给它起了个怪诞的名字‘虚数’”。莱布尼兹称“虚数是美妙而奇异的神灵的隐蔽所,它几乎是既存在又不存在的两栖物。” 【《数学五千年》P178】
6、“2000多年来,数学家们都无法找到一个公式把所有的质(合)数全表示出来。”【《数学五千年》P133】
7、国际数学界为“七大数学难题求解”,呼吁“没有数学,就没有国家的发达,应该重视对数学的投资。”
……
从上引述中可看出,“利用现有的数学理论及工具根本无法论证…要想解决必须寻找到新的理论和工具。”【数学界发言人语】因此,它又牵涉到概念、标准、思维方式等哲学问题。
大家知道,数学是科学的象征,而科学是永恒的真理。然而数学在当代文明下仍分为“实用数学”(或指已知类数学)与“理论数学”(或指研讨类数学)两领域。“实用数学”类是将现已掌握的数学规律通过学校传授、普及给人们。“理论数学”类是将现未完全掌握的数学部分以“猜想”、“假说”、“商探”、“科幻”等形式,通过讨论、争鸣、批驳、答辩等途径,使之完善、完备、转化、填充至“已知数学类”;使之为人类拓宽更多、更好的实效工具;或为人类困惑、不解的难题作出科学地解释。此种观点如同黑格尔所言:“几何学在欧几里得留给我们的范围内可以看作已经结束,不能再有更多的历史了。如果在科学上真有不可逾越的顶峰,如果人类可以在某一天穷尽对真理的认识,那么,人类的智慧不是就会在这一天凝固起来了吗?还会有什么人类的进步、科学的发展呢?”
而“理论数学”中的“算术公理的无矛盾性”,就是客观存在的真实反映。如当n>4时,a的n次方=m,则m 开n次方=a无矛盾性;但不能因现无“求根式”,而用不是反映高方规律的式与法使之不能正确复原而呈m 开n次方约=a=b±r产生矛盾性。又如,质、合数原本真实客观地存在着,不能因现无“求质式”或“求合式”就否定了它们的规律性与可求性。再如,虚数在客观、真实中是不存在的,不能因现行的式与法使之不能按正常、正确规律复原,而采用“附加数”的办法,来弥补该式、法的错误性以达到正确值。但在“算术公理的无矛盾性”方法中,不再存在虚数i或“增、丢根”的现象。完全遵守“除法是乘法的逆运算”、“开方是乘方的逆运算”这一真理性和客观存在性。在这里,有个“概念”或指“哲学问题”值得商讨与注意:
不同的事物或规律产生不同的公式或原则;不同的原则或公式反映不同的规律或事物。
若出现某公式不符合某事物、某规律;应是公式不符合某事物、某规律;而不是某规律、某事物不符合某公式、某方法。
也即是某公式、某方法选择的不对,而不是某规律、某事物不符合某公式、某方法。
例,现无“求质、合数公式”,但现法中均采用不是反映质、合数规律的式与法去求质、合数,故必不准确而出现矛盾性。
又例,高次方的开方或高次方程的解,应用高次方的开方法或高次方程的公式去求解;若采用反映低方规律的式与法去解求,必为“大约值”而产生矛盾性。
也即,不是反映某事物、某规律的式与法,不能用这类式与法去解;是采用的方式、方法不对;而不是某命题、某规律、某客观存在不符合这公式、这方法。
在这里,规律、规律型公式、客观存在是绝对真理;是采用的方式、方法不对,而不是客观存在、规律型公式、规律等错了。
若采用反映全方位、能包容众多同类问题、规律的式与法,便可解求同种类型的这类众多问题。即:先寻出这类众多同类问题的规律性与其通用性的公式或工具;再用这类公式或工具去解题;而不是用解决另类问题的现成“专用工具”,去解决非同类且我们不知其规律的一些非常规的问题。如开五方就用五方的公式,而不能用开平方的公式去开五次方。
康托的“连续统假说”就是站在这一观点上来研讨数学问题的,去寻求真正反映数的逻辑结构规律,使之能达到“算术公理的无矛盾性”的式与法,以使数学大厦的基础不再产生裂痕。然而康托的思维方式是反传统、违常规的。在《数学五千年》P212中说:“在巨大的精神压力下,康托在1884年患了精神分裂症…1918年逝于哈雷精神病研究所。可是,真理只接受实践的检验,而不会听任权威的摆弄。康托的新理论在数学的进一步发展中得到了重要应用,显示出了它巨大的科学价值。伟大的数学家希尔伯特高度赞誉康托的理论是‘数学思维的最惊人的产物’,‘人类活动的最美的表现之一’,并坚定地宣称:‘没有人能够把我们从康托创造的乐园中赶走!’”
由于康托的“连续统假说”属理论数学,在实用数学中介绍极少。因此,在按其思维方式的追寻中难免有误或出错。仅作抛砖引玉,供数学爱好者参考,以拓宽思维、思路。
那么数学基础或指数理逻辑结构人类是否可以全面认识或全面探明呢?
如,当代数学上争论的最大焦点是:“数论”所涵盖的一切数是否都能寻找到它们的“数理结构规律”性?其中最具代表性的是“1+1”中的求质数问题和“世界七大数学难题”中的求合数问题【即P对PN问题】。那么这些问题是否人类就无法认识了呢?当我们站在非传统、非常规的方式来研探这些问题时,就会发现真有“柳暗花明”的状况。
如:在近代数学中,是用2n表示偶数,用2n+1表示奇数。而在《数论》【专门研究正整数的性质及相互关系,质数、合数、不定方程都是数论研究的对象】的追寻中,是想将奇、质、合三数用一通用的“不定方程式”来表达奇数规律。因此,这个方程式则呈,当m为任意正整奇数时:
g·g+2gn=m; g·g+2gn-m=0,g大于或等于1,n大于或等于0,m大于0。
当g为1时,g·g+2gn=1×1+2×1×{0,1,2,3,4……至无穷大}=1+2n;
即g·g+2gn与近代2n+1表示奇数是一致的。
其奇、偶数在科学上识别与证明方法为:
    m÷2=n;或m÷2g=n ;所以m为偶数。m÷2不等于n;或m÷2g不等于n;所以m为奇数。即在国际数学中,奇数的识别原则是建立或依赖于偶数2或2n上的。
同理,质数的识别原则是建立或依赖于合数上的。因质数是各类合数集的空集,为此,它也只能依赖合数式来判定。而合数当代是用“抽象式”pq=m来表示的。当m为一个大数时,人们无法得知pq各为何数,或是不能分解的质数。
但用奇、质、合三数通用的“不定方程式”g·g+2gn-m=0后,奇、质、合三数的划分就如同划分自然数、奇、偶数般清晰、明确。
当g为大于1的任意正整奇数时,即,g={3,5,7,9,11,13……至无穷大}
其合数的无穷大规律为:
g·g+2gn-m=0;或g·g+2gn=m;g大于1;n大于等于0;m大于等于9。则合数的无穷大集与其各型合数分集呈:
g·g+2gn=m=g·g+2g{0,1,2,3,4,5……至无穷大}【g大于1,则m必大于等于9。】
3×3+2×3n=9+6×{0,1,2,3,4,5……至无穷大}【3的平方+6n无穷大合数型集。】
5×5+2×5n=25+10×{0,1,2,3,4,5……至无穷大}【5的平方+10n无穷大合数型集。】
7×7+2×7n=49+14×{0,1,2,3,4,5……至无穷大}【7的平方+14n无穷大合数型集。】
9×9+2×9n=81+18×{0,1,2,3,4,5……至无穷大}〖9的平方+18n无穷大合数型集。同3型〗
11×11+2×11n=121+22×{0,1,2,3,4,5……至无穷大}【11的平方+22n无穷大合数型集。】
……
g·g+2gn=m=g·g+2g{0,1,2,3,4,5……至无穷大}【奇数平方+2倍奇数n无穷大合数型集。】
其质、合数在科学上的识别与证明方法的方法为:
(m--g·g)÷2g=n;或m÷g=n ;所以m为合数。
(m--g·g)÷2g不等于n;或m÷g不等于n;所以m为质数。
即在国际数学中,质数的识别原则是建立或依赖于合数g或2g上的。同奇、偶数的方法无异。且这种方式还能指出这个大数是质数还是合数,是何类型上的第几位合数。【技术文中有详细介绍。】当理解了这种方法后,质、合数〖及其它同情形类〗的问题就容易解证了。
又如:“除法是乘法的逆运算”、“开方是乘方的逆运算”——真理!但人类至今还未寻到“高次方的互逆式”——即求根式。【技术文中有详细介绍】
当我们采用新的“数理结构法”后,这些诸多数学问题【技术文中有详细介绍】同前述的“奇、质、合问题”一样非常简单、清晰、明确,并符合“算术公理的无矛盾性”标准。
而这种新方法就是国际数学界追寻的“精确的数理逻辑结构”、“连续统法”或指“算术公理的无矛盾性”,其实质就是要寻求真实展现客观存在的规律型公式,去替代一切原不知道其规律、原理而被迫使用的“经验式”、“概率式”等非“算术公理的无矛盾性”的大约值求法。除了圆周长与直线长的“互逆”还未寻找到“算术公理的无矛盾性”方法外,其它数学问题均可用“连续统法”去解决。
“连续统”(Continuum)即实数集(有理、无理数的统称)。如奇数集、偶数集、质数集、合数集、n方集、空集等。
“连续统假设”认为:数学问题的实质是寻其规律性。而数学规律可用数字的“数理逻辑结构”所展现出来的相互关系、轨迹、潜貌等方式来寻得或推绎出——因“实数与数轴上的点是一一对应的”(公认真理)。而这个“点”,可按各命题所需的元素去制定;“实数”、“数轴”根据命题所含的数型分成各数集与其相对应的各数轴轨。
当以某一命题的元素(如p.q=m等)作单位1,视为数轴上的一个点,那么由无穷多个这样的“点元素”构成的集合,就成了这个命题的“点集合和无穷阶”——“直线的连续性(或称统)”。此集合与数轴称“基元素(集)线”。点与点间的“数间距数”称“缝隙”(即空集Φ),由无穷多个这样的“缝隙数”构成的集合与数轴称“缝元素(集)线”。以“缝元素(集)线”为基准,再分成若干“缝隙数集”与其数轴,当分至为一等值“数间距数”时,此律称“基律”。
在各型数集中,可用公式表示的称“可列无穷集合”(简称“可列集”)。原无法表示或原不知其规律的,现称“不可列集”【实为可列集,并可用规律型公式表达。】。
用上法的图、轨、式反映命题的规律、潜貌等关系称“数理逻辑结构”。用这种方式逆求、反证、解题称“连续统法”。
数学研究界认为:若此猜测成立,并符合“算术公理的无矛盾性”标准,则数学基础理论不会再发生“罗素悖论”等自相矛盾性。为此,“康托被公认为是对本世纪数学的发展影响最大的几个19世纪伟大数学家之一”。希尔伯特高度赞誉康托的理论是“数学思想的最惊人的产物”、“人类活动的最美的表现之一”;并坚定地宣称:“没有人能把我们从康托创造的乐园中赶走!”其可行性证明的原理、规律、概貌如下各图示。【见附件各图与公式】
在改革开放与世界接轨的今天,我国发生了翻天覆地变化。中国载人飞船上天,奥运会金牌第二,各种学科均靠近了世界先进行列,数学学科也应奋力向上。
因数学是一切科学学科的基础,谁先掌握了最先进的数学基础论,谁就会在其它学科领域有飞速的发展。谁掌握了先进的数学方法,谁的思维方式会发生脱胎换骨似的突变;看问题的方式方法也会变得科学与严谨,综合素质会发生根本性的变化。
因此,在各行各业高度兴旺法发达的火红背景下,振兴中华民族的数学基础论也势在必行,迫在眉睫。否则,在当代国际数学困境同一起跑线上的泱泱大国,将重演历史的悲剧,再度失去领先的机遇……
发表于 2010-5-30 12:59 | 显示全部楼层

【原创】 近代数学的困境与发展方向的商探

俞根强,俞家的根强不强,就看你闹蠢货响亮不响亮哟,,,
发表于 2010-5-30 14:17 | 显示全部楼层

【原创】 近代数学的困境与发展方向的商探

呵呵!看了,wangyangkee 老师,呵呵!
发表于 2010-5-30 14:22 | 显示全部楼层

【原创】 近代数学的困境与发展方向的商探

俞根强,闹蠢货,挫折面前瘪气了----------唉,网络数学家,过于脆弱了--------俞氏门庭的荣耀,,,还要不要?
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-24 19:40 , Processed in 0.082546 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表