|
求:
\[
\int x^x \text{d}x
\]
解答:
\[
\int x^x \text{d}x
=\int e^{x \ln x}\text{d}x
= \int \left[\sum_{k \ge 0}\frac{(x\ln x)^k}{k!}\right] \text{d}x
=\sum_{k \ge 0}\frac{1}{k!} \left[ \int (x\ln x)^k \text{d}x \right]
\]
令 \(\omega = -\ln x\),我们有
\[
\text{d}x=-x\text{d}\omega = -e^{-\omega}\text{d}\omega
\]
\[
\sum_{k\ge 0}\frac{1}{k!}\left[ \int(e^{-\omega})^k (-\omega)^k (-e^{-\omega}) \text{d}\omega \right]
=-\sum_{k\ge 0}\frac{(-1)^k}{k!}\left[\int (e^{-\omega})^{k+1} \omega^k \text{d}\omega\right]
\]
令 \(\phi=\omega (k+1)\),我们有
\[
\text{d}\omega=\frac{\text{d}\phi}{k+1}
\]
因此
\[
-\sum_{k\ge 0}\frac{(-1)^k}{k!}\left[\int (e^{-\omega})^{k+1} \omega^k \text{d}\omega\right] \\
=-\sum_{k\ge 0}\frac{(-1)^k}{k!}\left[\int\frac{e^{-\phi}\phi^k}{(k+1)^{k+1}} \text{d}\phi \right] \\
=-\sum_{k\ge 0}\frac{(-1)^k}{k!(k+1)^{k+1}}\left[\int e^{-\phi}\phi^k \text{d}\phi \right] \\
=\sum_{k\ge 0}\frac{(-1)^k}{k!(k+1)^{k+1}}\Gamma(k+1,\phi)
\]
其中 \(\Gamma(a,b)\) 是不完全\(\Gamma\)函数。所以,结果是
\[
\int x^x \text{d}x
=
\sum_{k\ge 0}\frac{(-1)^k}{k!(k+1)^{k+1}}\Gamma(k+1,\ln x(k+1)) + C
\]
其中 \(C\) 是积分常数 |
|