|
本帖最后由 elim 于 2020-9-12 08:02 编辑
由中值定理\(\,f(x+h)-f(x) = (f'(x)+\eta(x,h))h\;\;\small(\displaystyle\lim_{h\to 0}\eta(x,h) = 0)\)
取\(\,h=\frac{b-a}{n},\;x_k=a+kh,\;M_k=(x_k,f(x_k))\) 则当 \(f'\) 在\(\,[a,b]\)
连续时\(\,f'\) 一致连续, \(\eta(x,h)\) 关于\(\,x\) 随\(\,h\) 一致趋于\(\,0\). 于是有
\(\displaystyle\sum_{k=1}^n|M_{k-1}M_k|=\sum_{k=1}^n\sqrt{h^2+(f(x_k)-f(x_{k-1}))^2}\)
\(\displaystyle=\sum_{k=1}^n h\sqrt{1+(f(x_{k-1})^2}+\sum_{k=1}^n h\small\frac{2f'(x_{k-1})\eta(x_{k-1},h)+\eta^2(x_{k-1},h)}{\sqrt{1+(f'(x_{k-1})+\eta(x_{k-1},h))^2}+\sqrt{1+(f'(x_{k-1}))^2}}\)
易见最后那个和随\(\,h\to 0\) 趋于\(\,0\). 令\(\,n\to\infty\) 即\(\,h\to 0+\), 得
\(\displaystyle\,S=\lim_{n\to\infty}|M_{k-1}M_k|=\int_a^b\sqrt{1+(f'(x))^2}dx\) |
|