要真正严格地建立起代数几何的理论基础,离不开抽象代数,这是因为抽象代数能够在最一般的情形中准确地描述代数簇的性质。在1900到1930年之间,已经开始出现了一些抽象代数的理论,包括群、环、域和模等理论。群论主要来源于19世纪的伽罗瓦(Galois)理论,而环与理想的概念则来自于戴德金的代数数论,它们的最早雏形是数域的代数整数环及其理想的概念。克罗内克不仅从代数数论中抽象出了一般的环与理想的概念,并且拉斯克(Lasker)在20世纪初期就发现了理想与代数簇之间一些最基本的天然联系,例如不可约仿射代数簇 V 所对应的“坐标环(coordinate ring)”A(V) 一定是整环,而不可约仿射代数簇的几何维数实际上就等于这个整环的商域在复数域上的超越次数等。
图6: 伽罗瓦
这样我们就看到,在仿射代数簇 V 与坐标环 A(V) 之间有一一对应的关系,如果我们将若干个仿射代数簇适当地“拼贴”在一起,那么就可以得到一个传统意义上的代数簇。因此仿射代数簇是代数簇的基本组成部分。例如 n 维复射影空间 CP^n 就是一个最简单的代数簇,它是由 n+1 个普通的 n 维复欧氏空间经过拼贴而成的。
接着克鲁尔(Krull)进一步建立了更多的关于环的理想理论,包括环的局部化(localization)的概念、整闭环的性质、赋值理论和克鲁尔维数等内容。对代数几何来说,环的局部化是非常基本的概念。对于仿射代数簇 V 来说,整环 A(V) 的商域是它的有理函数域 K(V)。对 V 上的任何点 P ,都有一个局部环,后来人们发现,这些局部环的全体组成了可以刻画仿射代数簇 V 的几何特征的结构层 OV(structure sheaf)。
E.诺特(E.Neother)是20世纪最伟大的女数学家,她也是代数几何学家马克斯·诺特的女儿。在E.诺特之前,代数学基本上只局限在实数域和复数域中进行研究,是E.诺特首先认识到代数结构是代数学中的首要概念,她对建立起抽象代数学的基本理论框架起着主要的作用,范德瓦尔登(van der Waerden)写的著名教材《代数学》就是为系统总结E.诺特和E.阿丁(E.Artin)的环论以及其他抽象代数的理论而写的。E.诺特将戴德金的代数数域的理想分解理论推广到一般的环上,得到了许多像“任何理想均可表示为准素理想的交”这样的基本定理,特别是关于“诺特环”等在代数几何中最常用到的有关概念和理论。
格罗腾迪克的概形理论将代数几何打造成了一个在很大程度上将几何、代数、数论与分析完美统一起来的逻辑推理体系,它具有许多经典代数几何理论所没有的优点。例如在概形上,可以有严格的“一般点(generic point)”、“基变换(change of bases)”、以及“幂零元(nilpotent element)”等非常有用的概念,并且可以用精细的抽象代数的方法来研究几何对象的各种抽象的“几何性质”,这样就为解决一大批重要的经典数学问题开辟了道路。同样在概形上,我们可以做所有的在经典代数簇上曾经做过的事情,例如可以定义广义的“纤维丛”(即模层)、“除子”和“微分”,可以有层的上同调理论(包括Serre对偶定理等),可以建立严格的代数簇分类理论和黎曼-罗赫定理,以及建立严格的相交理论(包括周环和陈类)等。在概形上也能够做以前根本无法做到的事情,例如可以构造模空间的严格理论,尤其是可以建立能够应用于数论的“算术代数几何”理论等。