记得我看过一本 Joseph Wolf 写的书,在序言里,作者感谢芝加哥大学的代数学 Adrian Albert,为什么感激他呢?作者说:“Albert 教我代数,使得我坐下来的时候,看到代数的问题不会恐慌,使我能够有信心地去解决这些代数上的问题”。我们的基本功夫能不能做到如此,就是当看到数学的问题时,能不能够坐下来有信心地去想办法对付它,我想这是做学问很重要的过程。我们往往看到数学问题时,恐慌得不晓得怎么办,因此就放弃了,我想大家都有这个经验。做基本功夫一定要做到看一个题目时,即使是历史上未解决过的问题,你还是可以坐下来,花工夫想办法去解决它。即使你不能够解决它,你至少要有一定的想法去对付这个问题,不会恐慌或放弃它,我想这种训练是最重要的。往往我们因为基本功夫没做好,当一个深奥的题目出现的时候,我们拒绝去接受它,认为这些题目不重要,这是能力有缺陷的学者解释自己为什么不能去做某些问题时最常见的想法。结果是“重要的问题来了,却眼睁睁地看着别人解决它,自己却无能为力!”。著名的物理学家泡利(Wolfgang Pauli)就曾经说过这样的话。爱因斯坦是个伟大的物理学家,但是他不懂得几何的想法,他找同学 Marcel Grossmann 帮忙,才知道黎曼的重要工作,否则广义相对论发展不出来。
爱因斯坦在 1934 年他发表的题为《Notes on the origin of the general theory of relativity》的论文中,回顾了广义相对论的发展。
他曾说:“I was of course acquainted with Mach's view, according to which it appeared conceivable that what inertial resistance counteracts is not acceleration as such but acceleration with respect to the masses of the other bodies existing in the world. There was something fascinating about this idea to me, but it provided no workable basis for a new theory.”
爱因斯坦花了不少工夫,在孤立的引力系统下,构造了大家都觉得满意的能量的定义。紧跟着的一个重要问题:是否一如其他物理系统,这个能量是正的?为什么爱因斯坦问这个问题呢?因为负能量的引力系统会导致整个系统倒塌,这样一来,广义相对论就不能够描述现实世界了。这个问题困扰物理学家多年,在很长的时间里,广义相对论每年的年会中,都有一组学者专门讨论这问题。一九五七年,某著名广义相对论学者宣称物理学家要正视引力场出现负能量的可能性!一九七三年斯坦福的国际几何学大会,邀请了芝加哥大学物理系的名教授 Robert Geroch 作报告,在演讲中他呼吁几何学家帮忙物理学家解决这个问题。
一九七九年普林斯顿高等研究所聘请我当教授时,我年方三十,初生牛犊不畏虎,和年轻的伙伴在科学的广袤原野上奔驰,倍觉兴奋。“金弋铁马,气吞万里如虎”。很幸运的,遇见了两位年轻的博士后,一个叫 Gary Horowitz,他成为我的助理,另外一个叫 Andy Strominger,以后他们都成为美国科学院的院士。我也带领了一批出色的博士生,其中佼佼者叫 Robert Bartnik。以后他们在广义相对论的贡献,都是出类拔萃的。
我和理察的工作吸引了很多物理学家的注意。一九八零年我在普林斯敦高等研究所当教授时,和大批物理学家来往,开讨论班。数学学院的同事说:“丘成桐忘记了我们正在和物理学院吵大架呢!”我不以为然。有一次,我告诉杨振宁先生说:“André Weil 是一个伟大数学家,脾气虽然很大,也会骂人,但是还是很可爱的。”杨先生说他看不到 Weil 有什么可爱的地方。
刚开始时,建立弦理论的真空模型是当务之急。他们写下了一些条件,但是不知道满足这些条件的时空存不存在。他们记起了我四年前讲的话, Strominger 很兴奋地打电话给我。当时我正在圣地亚哥看望家人,在太太的办公室里欣赏 La Jolla 的蓝天碧海,听到这个消息,也兴奋莫名。紧接着 Witten 的电话也来了,他从东岸飞到圣地亚哥,和我谈了一整天。我向他解释这些空间的特征,及如何利用代数方法去构造它们,同时纠正了他的一些想法。
一九八五年理论物理学家在芝加哥的阿贡国家实验室(Argonne National Laboratory)召开大会,很多杰出物理学者与会,我也被邀作一小时报告,解释卡丘流形的性质和构造方法。我指出,现在已经能够构造出十万个以上的卡丘空间,听众很是惊讶。为了满足物理的要求,我构造了一个刚好有三簇费米子(leptons and quarks)的空间。直到如今,这样的卡丘空间并不多。
一九八八年秋某天,我的博士后 Brian Greene 突然跑进我的办公室,跟我讲述他和另一个研究生的工作。他们发现每个卡丘空间都有另外一个卡丘空间与之对偶,两者的拓扑性质虽然不一样,但是产生出来的物理现象却是完全一样的。当时我极为惊讶,并不相信这大胆的看法。但是,物理同行开始做计算,很快相信它是可能的。更有甚者,他们给出一条漂亮的公式,足以解决代数几何学中一个古老问题。