|
通过一段gp代码,算得展开式的前20项系数
[1, 1/4, 1/24, -1/192, -13/1920, -47/23040, 73/322560, 2447/5160960, 16811/92897280, -15551/1857945600, -1726511/40874803200, -18994849/980995276800, -10979677/25505877196800, 2983409137/714164561510400, 48421103257/21424936845312000, 135002366063/685597979049984000, -778870772857/1793102406746112000, -232033147779359/839171926357180416000, -1305952009204319/31888533201572855808000, 58740282660173759/1275541328062914232320000, 1862057132555380307/53572735778642397757440000]
在oeis上找到了系数分子构成的数列oeis.org/A274447,这个a应是W(exp(x)), W是lambert function。
有意思的是,系数的分子满足如下通项式(oeis.org/A001662):
a(n) = Sum_{k=0..n-1} (n+k-1)!*Sum_{j=0..k} ((-1)^(j)/(k-j)!*Sum_{i=0..j} (((1/i!)* Stirling1(n-i+j-1,j-i))/(n-i+j-1)!))*2^(n-j-1))), n > 0
a(0)=1.
附录:
pari/gp 代码
K = List([1]);
my(p,end);
end = 20;
for(n = 1,end,
x = sum(k=1,n,K[k]*a^k) + x1*a^(n+1) + O(a^(n+2));
s = (x+1-exp(-x))/2;
p = polcoef(s,n+1,a);
p = -polcoef(p,0,x1);
print(s);
listput(K,p);
);
print(K);
|
|